Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90683
標題: Synthesis of novel polydopamine functionalized hybrid nanomaterials for energy and sensor applications
新型官能基化聚多巴胺複合奈米材料於能源及感測器上之應用
作者: 莫拉里
Settu Murali
關鍵字: Oxygenreductionreaction
Ag-PDA@Bi2O3
Ag-PDA-Bi3+
Hydrogenperoxide
氧的還原反應
Ag-PDA@Bi2O3
Ag-PDA-Bi3+
過氧化氫
引用: Chapter 1 1. J. Riu, A. Maroto and F. X. Rius, Talanta, 2006, 69, 288. 2. D. A. Skoog, F. J. Holler and S. R. Crouch, Principles of instrumental analysis, Sixth edition, Thomson brooks/cole, 2007, Chapter 25. 3. A. J. Bard and R. L. Faulkner, Electrochemical Methods : Fundamentals and Application, Wiley, 2000. 4. J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan and X. W. (David) Lou, Adv. Mater., 2012, 24, 5166. 5. S. Guo, S. Zhang and S. Sun, Angew. Chem. Int. Ed., 2013, 52, 8526. 6. E. Fabbri, A. Habereder, K. Waltar, R. Kotz and T. J. Schmidt, Catal. Sci. Technol., 2014, 4, 3800. 7. F. Safizadeh, E. Ghali and G. Houlachi, Inter. J. Hyd. Energy, 2015, 40, 256. 8. H. Akter, A. A. Shaikh, T. R. Chowdhury, M. S. Rahman, P. K. Bakshi and A. J. S. Ahammad, ESC Electrochem. Letters., 2013, 2(8), B13. 9. M.-H. Chiu, A. S. Kumar, S. Sornambikai, P.-Y. Chen, Y. Shih and J.-M. Zen, Inter. J. Electrochem. Sci., 2011, 6, 2352. 10. X. Liu, H. Jia, Z. Sun, H. Chen, P. Xu and P. Du, Electrochem. Commun., 2014, 46, 1. 11. A. Martin, M. A. Lopez, M. C. Gonzalez and A. Escarpa, Electrophoresis, 2015, 36, 179. 12. S. Baskar, J.-L. Chang and J.-M. Zen, Biosen. Bioelectr., 2012, 33, 95. 13. H. Lee, S. M. Dellatore, W. M. Miller and P. B. Messersmith, Science, 2007, 318, 426. 14 L. Zheng, L. Xiong, D. Zheng, Y. Li, Q. Liu, K. Han, W. Liu, K. Tao, S. Yang and J. Xia, Talanta, 2011, 85, 43. 15. Y. Liu, K. Ai and L. Lu, Chem. Rev., 2014, 114, 5057. 16. M. d'Ischia, A. Napolitano, V. Ball, C. T. Chen and M. J. Buehler, Acc. Chem. Res., 2014, 47(12), 3541. 17. L. Yang, J. Kong, D. Zhou, J. M. Ang, S. L. Phua, W. A. Yee, H. Liu, Y. Huang and X. Lu, Chem. Eur. J., 2014, 20(25), 7776-83. 18. Z. Zhang, J. Zhang, B. Zhang and J. Tang, Nanoscale, 2013, 5, 118. 19. Z. Guo, J. Xue, T. Liu, X. Song, Y. Shen and H. Wu, Micro & Nano Lett., 2014, 9(3), 210. 20. Y. Dongn, T. Liu, S. Sun, X. Chang and N. Guo, Ceramics Inter., 2014, 40, 5605. 21. Y. Cong, T. Xia, M. Zou, Z. Li, B. Peng, D. Guo and Z. Deng, J. Mater. Chem. B, 2014, 2, 3450. 22. G. Loget, J. B. Wood, K. Cho, A. R. Halpern and R. M. Corn, Anal. Chem., 2013, 85, 9991. 23. G. Wang, H. Huang, X. Zhang and L. Wang, Biosen. Bioelectr., 2012, 35, 108. 24. H. Wang, X. J. Bo, A. Wang and L. Guo, Electrochem. Commun., 2014, 36, 75. 25. Q.-L. Zhang, T.-Q. Xu, J. Wei, J.-R. Chen, A.-J. Wang and J.-J. Feng, Electrochim. Acta, 2013, 112, 127. 26. X. Yu, H. Wang, L. Guo and L. Wang, Chem. Asian J., 2014, 9, 3221. 27. T. Lee, E. K. Jeon and B.-S. Kim, J. Mater. Chem. A, 2014, 2, 6167. 28. Y. Huang, F. Fu, P. Wu, Y. Wang and J. Yao, J. Pow. Soures, 2014, 268, 591. 29. W. Wei, H. Liang, K. Parvez, X. Zhuang, X. Feng and K. Mullen, Angew. Chem. Int. Ed., 2014, 53, 1570. 30. H.-P. Cong, P. Wang, M. Gong and S.-H. Yu, Nano Energy, 2014, 3, 55. 31. Y. M. Yu, J. H. Zhang, C. H. Xiao, J. D. Zhong, X. H. Zhang and J. H. Chen, Fuel Cells, 2012, 12(3), 506. 32. K. Ai , Y. Liu, C. Ruan , L. Lu and G. (Max) Lu, Adv. Mater., 2013, 25, 998. 33. H. Zhang, X. Liu, G. He, X. Zhang, S. Bao and W. Hu, J. Pow. Sources, 2015, 279, 252. 34. S. Baskar, J.-L. Chang and J.-M. Zen, J. Poly. Sci. Part B: Poly. Phys., 2013, 51(22), 1639. Chapter 2 1 J.-M. Zen and A. S. Kumar, Screen-printed electrochemical sensor, Encyclopedia of Sensors, A. G. Craig, C. D. Elizabeth and V. P. Michael, American Scientific Publisher, California, 2005. Chapter 3 1 S. Guo, S. Zhang and S. Sun, Angew. Chem. Int. Ed., 2013, 52, 8526. 2 K. B. Liew, W. R. W. Daud, M. Ghasemi, J. X. Leong, S. S. Lim and M. Ismail, Int. J. Hydrogen Energy, 2014, 39, 4870. 3 T.-H. Yang, S. Venkatesan, C.-H. Lien, J.-L. Chang and J.-M. Zen, Electrochim. Acta, 2011, 56, 6205. 4 S. Venkatesan, A. S. Kumar, J.-F. Lee, T.-S. Chan and J.-M. Zen, Chem. Eur. J., 2012, 18, 6147. 5 K. E. Toghill and R. G. Compton, Int. J. Electrochem. Sci., 2010, 5, 1246. 6 C.-C. Yang, A. S. Kumar and J.-M. Zen, Electroanalysis, 2006, 18(1), 64. 7 X. Ma, H. Meng, M. Cai and P. K., Shen, J. Am. Chem. Soc., 2012, 134, 1954. 8 F. Han, T. Zhang, J. Yang , Y. Hu and J. Chen, Adv. Mater., 2014, 26, 2047. 9 H. Wang, X. Bo, A. Wang and L. Guo, Electrochem. Commun., 2013, 36, 75. 10 L. Tammeveski, H. Erikson, A. Sarapuu, J. Kozlova, P. Ritslaid, V. Sammelselg and K. Tammeveski, Electrochem. Commun., 2012, 20, 15. 11 C.-L. Lee, H.-P. Chiou, C.-M. Syu and C.-C. Wu, Electrochem. Commun., 2012, 12, 1609. 12 Y. Lu, Y. Wang and W. Chen, J. Power Sources, 2011, 196, 3033. 13 Y. Lu and W. Chen, J. Power Sources, 2012, 197, 107. 14 Y. Zhang, M. Ma and Q. Chen, J. Appl. Electrochem., 2014, 44, 419. 15 B. B. Blizanac, P. N. Ross and N. M. Markovic, J. Phys. Chem. B, 2006, 110, 4735. 16 P. Singh and D. A. Buttry, J. Phys. Chem. C, 2012, 116, 10656. 17 D. A. Slanac, W. G. Hardin, K. P. Johnston and K. J. Stevenson, J. Am. Chem. Soc., 2012, 134, 9812. 18 J. Guo, A. Hsu, D. Chu and R. Chen, J. Phys. Chem. C, 2010, 114, 4324. 19 P. Chen, T. Y. Xiao, Y. H. Qian, S. S. Li and S. H. Yu, Adv. Mater., 2013, 25, 3192. 20 R. Liu, D. Wu, X. Feng and K. Mullen, Angew. Chem., 2010, 122, 2619. 21 I. Y. Jeon, S. Zhang, L. Zhang, H. J. Choi, J. M. Seo, Z. Xia, L. Dai and J. B. Baek, Adv. Mater., 2013, 25, 6138. 22 Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X. Chen and S. Huang, ACS Nano, 2012, 6, 205. 23 Z. W. Liu, F. Peng, H. J. Wang, H. Yu, W. X. Zheng and J. Yang, Angew. Chem. Int. Ed., 2011, 50, 3257. 24 L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen, X. Wang, Q. Wu, J. Ma, Y. Ma and Z. Hu, Angew. Chem. Int. Ed., 2011, 50, 7132. 25 C. Zhang, N. Mahmood, H. Yin, F. Liu and Y. Hou, Adv. Mater, 2013, 25(35), 4932. 26 H. Lee, S. M. Dellatore, W. M. Miller and P. B. Messersmith, Science, 2007, 318, 426. 27 Y. Liu, K. Ai and L. Lu, Chem. Rev., 2014, 114, 5057. 28 K. Ai, Y. Liu, L. Ruan, L. Lu and G. M. Lu, Adv. Mater, 2013, 25, 998. 29 W. Wei, H. Liang, K. Parvez, X. Zhuang, X. Feng and K. Mullen, Angew. Chem. Int. Ed. 2014, 53, 1570. 30 K. E. Lee and B.-S. Kim, J. Mater. Chem. A, 2014, 2, 6167. 31 S. M. Sayed and K. Juttner, Electrochem. Acta, 1983, 28, 1635. 32 C. Jeyabharathi, J. Mathiyarasu and K. L. N. Phani, J. Appl. Electrochem., 2009, 39, 45. 33 I. Arul Raj and K. I. Vasu, J. Appl. Electrochem., 1993, 23, 728. 34 R. A. Zangmeister, T. A. Morris and M. J. Tarlov, Langmuir, 2013, 29, 8619. 35 S. Yu, Y. Chen, H. Li, L. Yang, Y. Chen and Y. Yin, J. Mol. Struct., 2010, 982, 152. 36 Y. Xie, B. Yan, H. Xu, J. Chen, Q. Liu, Y. Deng and H. Zeng, ACS Appl. Mater. & Interfaces, 2014, 6, 8845. 37 F. Wang, R. Han, G. Liu, H. Chen, T. Ren, H. Yang and Y. Wena, J. Electroanal. Chem., 2013, 706, 102. 38 S.-K. Tzeng, M.-H. Hon and I.-C. Leuc, J. Electrochem. Soc., 2012, 159, H440. 39 A. S. Kumar, S. Sornambikai, S. Venkatesan, J.-L. Chang and J.-M. Zen, J. Electrochem. Soc., 2012, 159, G137. 40 T.-H. Yang, C.-Y. Liao, J.-L. Chang, C.-H. Lien and J.-M. Zen, Electroanalysis, 2009, 21, 2390. Chapter 4 1. L. Yang, J. Kong, D. Zhou, J. M. Ang, S. L. Phua, W. A. Yee, H. Liu, Y. Huang and X. Lu, Chem. Eur. J., 2014, 20, 7776. 2. A. S.-Khojin, H.-R. M. Jhong, B. A. Rosen, W. Zhu, S. Ma, P. J. A. Kenis and R. I. Masel, J. Phys. Chem. C, 2013, 117, 1627. 3. Y. Lu and W. Chen, J. Power Sources, 2012, 197, 107. 4. S. Murali, J.-L. Chang and J.-M. Zen, RSC Adv., 2015, 5, 4286. 5. A. J. Ward, A. M. Rich, A. F. Masters and T. Maschmeyer, New J. Chem., 2013, 37,593. 6. S. Baskar, J.-L. Chang and J.-M. Zen, J. Poly. Sci. Part B: Poly. Phys., 2013, 51, 1639. 7. F. Wang, R. Han, G. Liu, H. Chen, T. Ren, H. Yang and Y. Wen, J. Electroanal. Chem., 2013, 706, 102. 8. W.Ye, D. Wang, H. Zhang, F. Zhou and W. Liu, Electrochim. Acta, 2010, 55, 2004. 9. Y. Liu, K. Ai and L. Lu, Chem. Rev. 2014, 114, 5057. 10. M.-H. Chiu, A. S. Kumar, S. Sornambikai, P.-Y. Chen, Y. Shih and J.-M. Zen, Inter. J. Electrochem. Sci., 2011, 6, 2352. 11. A.-J. Wang, Q.-C. Liao, J.-J. Feng, Z.-Z. Yan and J.-R. Chen, Electrochim. Acta, 2012, 61, 31. 12. L. Fu, G. Lai, B. Jia and A. Yu, Electrocat., 2015, 6, 72. 13. C. G. Tsiafoulis, P. N. Trikalitis and M. I. Prodromidis, Electrochem. Commun., 2005, 7, 1398. 14. W. Chen, S. Cai, Q.-Q. Ren, W. Wen and Y.-D. Zhao, Analyst, 2012, 137, 49. 15. L. Zheng, L. Xiong, D. Zheng, Y. Li, Q. Liu, K. Han, W. Liu, K. Tao, S. Yang and J. Xia, Talanta, 2011, 85, 43. 16. A. S. Kumar, S. Sornambikai, P. Gayathri and J.-M. Zen, J. Electroanal. Chem., 2010, 641, 131. 17. W. Wang, A. Zhang , L. Liu, M. Tian and L. Zhang, J. Electrochem. Soc., 2011, 158, D228. 18. R. Luo, L. Tang, J. Wang., Y. Zhao, Q. Tu, Y. Weng, R. Shen and N. Huang, Colloids and Surf. B: Biointerfaces, 2013, 106, 66. 19. http://www.lasurface.com/database/elementxps.php from Bi3d 5/2 and Bi 4f 7/2. 20. L. Yan, X. Bo, D. Zhu and L. Guo, Talanta, 2014, 120, 304. 21. Y. Wang, M. Tang, X. Lin, F. Gao and M. Li, Microchim. Acta, 2012, 176, 405. 22. F. Xi , D. Zhao, X. Wang and P. Chen, Electrochem. Commun., 2013, 26, 81. 23. H.-P. Peng, R.-P. Liang, L. Zhang and J.-D. Qiu, J. Electroanal. Chem., 2013, 700, 70. 24. C.-C. Lu, M. Zhang, A.-J. Li, X.-W. He and X.-B Yin, Electroanalysis, 2011, 23, 2421. Chapter 6.1 1. S. Chen, J. Duan, J. Ran, M. Jaroniec and S. Z. Qiao, Energy Envinon. Sci., 2013, 6, 3693. 2. Y. Li, P. Hasin and Y. Wu, Adv. Mater., 2010, 22, 1926. 3. S. Chen, J. Duan, W. Han and S. Z. Qiao, Chem. Commun., 2013, 50, 207. 4. X. Zou, J. Su, R. Silva, A. Goswami, B. R. Sathe and T. Asefa, Chem. Commun., 2013, 49, 7522. 5. L. Yang, J. Kong, D.Zhou, J. M. Ang, S. L. Phua, W. A. Yee., H. Liu, Y. Huang and X. Lu, Chem. Eur. J., 2014, 20, 7776. Chapter 6.2 1. G. Zhao and S. E. Stevens Jr., Biometals, 1998, 11, 27. 2. C.-W. Chen, C.-Y. Hsu, S.-M. Lai, W.-J. Syu, T.-Y. Wang and P.-S. Lai, Adv. Drug. Del. Rev., 2014, 78, 88. 3. Z. Zhang, J. Zhang, B. Zhang and J. Tang, Nanoscale, 2013, 5, 118. 4. Y. Dong, T. Liu, S. Sun, X. Chang and N. Guo, Ceram. Inter., 2014, 40, 5605. 5. Z. Guo, J. Xue, T. Liu, X. Song, Y. Shen and H. Wu, Micro & Nano Letters, 2014, 9, 210
摘要: Nanomaterial synthesis and its applications are rapidly increasing day by day, especially for resolving the high cost material consuming in energy conversion and for improving the sensitivity and detection limit in electrochemical sensor. Polydopamine functionalized surfaces are highly helpful to synthesis nanoparticles and to tune the particle sizes in various conditions. Our aim of this study is to understand the polydopamine functionalized material in nanomaterial synthesis and to apply the advantages of PDA platform in various applications. First of all, high dispersion silver nanoparticles (Ag NPs) were successfully synthesized on functionalized polydopamine (PDA)@Bi2O3 NPs for use as electrocatalyst. In the proposed method, a uniform layer of PDA was first coated on Bi2O3 NPs. The surface of the PDA@Bi2O3 can then be used as a nanoscale guide to deposit Ag NPs and hence the formation of Ag-PDA@Bi2O3 hybrid nanocatalysts. It was found that Ag NPs enhanced the electrocatalytic ability on PDA@Bi2O3 by synergetic effect for direct 4e– transfer in oxygen reduction reaction (ORR) with a low overpotential. The surface morphology and lattice fringes of Ag NPs crystalline nature of the obtained Ag–PDA@Bi2O3 hybrid nanocatalysts were examined through HR-TEM and SAED pattern. The material's purity and chemical functional groups were identified by FT-IR analysis. This strategy provides new opportunities to design and optimize heterogeneous nanocatalysts with tailored size, morphology, chemical configuration and supporting substrates for metal-catalyzed reactions. Secondly, Highly dispersed Ag nanoparticles (AgNPs) synthesized on a polydopamine platform was demonstrated for electrocatalytic applications. It was based on electropolymerization of dopamine mediated by Bi3+ ions on screen printed carbon electrode, designated as PDA-Bi3+/SPCE, to prepare AgNPs varied from 5 to 15 nm by electroless deposition. The synergistic nature within the composites of the AgNPs-PDA-Bi3+/SPCE was essential to the extraordinary stability and reproducibility of the proposed system and hence for successful application in flow injection analysis. The AgNPs-PDA-Bi3+/SPCE showed good electrocatalytic activity for H2O2 reduction at –0.33 V in pH 7 PBS. Wide linear range from 100 μM to 20 mM was achieved for H2O2 detection with sensitivity of 44.6 μA/mM and detection limit of 26 μM (S/N = 3). This method offers a new opportunity to prepare NPs by metal-dopamine combined polymerization platform for multi-component electrocatalyst synthesis.
URI: http://hdl.handle.net/11455/90683
文章公開時間: 2017-04-22
Appears in Collections:化學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.