Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90687
標題: Novel Porous Graphene Microspheres for Dispersive Micro-solid Phase Extraction to the Preconcentration of UV-filters in Aqueous Sample Followed with HPLC-UV Analysis
新穎的石墨烯多孔微球應用於分散式微固相萃取 技術結合 HPLC-UV 偵測水中紫外線吸收劑
作者: 張侑甥
Yu-Sheng Chang
關鍵字: Dispersive micro-solid phase extraction
UV-Filters
HPLC-UV
water
紫外線吸收劑
分散式微固相萃取
石墨烯多孔微球
高效能 液相層析儀紫外光偵測器
引用: 1. Giokas, D. L.; Salvador, A.; Chisvert, A., UV filters: From sunscreens to human body and the environment. TrAC Trends in Analytical Chemistry 2007, 26 (5), 360-374. 2. Kimbrough, D. R., The photochemistry of sunscreens. Journal of chemical education 1997, 74 (1), 51. 3. Ash, M.; Ash, I., Handbook of green chemicals. Synapse Info Resources: 2004. 4. Lowe, N.J.; Shaatg, N.A.; Pathak M.A., Sunscreens: development, evaluation and regulatory aspects. Marcel Dekker Inc, New York, 1997 5. Shaath, N.; Shaath, M., Recent sunscreen market trends. Sunscreens, Regulations and Commercial Development (Shaath NA, ed). Third ed. Boca Raton, FL: Taylor & Francis 2005, 929-940. 6. Richardson, S. D., Environmental mass spectrometry: emerging contaminants and current issues. Analytical chemistry 2008, 80 (12), 4373-4402. 7. Japanese Ministry of Health and Welfare, 2000, No. 331/2000 8. Satcher, D., Report of the Surgeon General's Conference on Children's Mental Health: A national action agenda. 2000. 9. European Commission. Council Directive 1976 10. Ellis, C. N.; Varani, J.; Fisher, G. J.; Zeigler, M. E.; Pershadsingh, H. A.; Benson, S. C.; Chi, Y.; Kurtz, T. W., Troglitazone improves psoriasis and normalizes models of proliferative skin disease: ligands for peroxisome proliferator-activated receptor-γ inhibit keratinocyte proliferation. Archives of Dermatology 2000, 136 (5), 609-616. 11. Schauder, S.; Ippen, H., Contact and photocontact sensitivity to sunscreens. Contact dermatitis 1997, 37 (5), 221-232. 12. Schinicit, T., Ring, J., Abeck, D., Dermatology 1998, 196, 354 13. Schreurs, R.; Lanser, P.; Seinen, W.; van der Burg, B., Estrogenic activity of UV filters determined by an in vitro reporter gene assay and an in vivo transgenic zebrafish assay. Archives of toxicology 2002, 76 (5-6), 257-261. 14. Miller, D.; Wheals, B. B.; Beresford, N.; Sumpter, J. P., Estrogenic activity of phenolic additives determined by an in vitro yeast bioassay. Environmental Health Perspectives 2001, 109 (2), 133. 15. Tinwell, H.; Lefevre, P. A.; Moffat, G. J.; Burns, A.; Odum, J.; Spurway, T.; Orphanides, G.; Ashby, J., Confirmation of uterotrophic activity of 3-(4-methylbenzylidine) camphor in the immature rat. Environmental health perspectives 2002, 110 (5), 533. 16. Schlumpf, M.; Cotton, B.; Conscience, M.; Haller, V.; Steinmann, B.; Lichtensteiger, W., In vitro and in vivo estrogenicity of UV screens. Environmental health perspectives 2001, 109 (3), 239. 17. Jarry, H.; Christoffel, J.; Rimoldi, G.; Koch, L.; Wuttke, W., Multi-organic endocrine disrupting activity of the UV screen benzophenone 2 (BP2) in ovariectomized adult rats after 5 days treatment. Toxicology 2004, 205 (1), 87-93. 18. Meinerling, M.; Daniels, M., A validated method for the determination of traces of UV filters in fish using LC–MS/MS. Analytical and bioanalytical chemistry 2006, 386 (5), 1465-1473. 19. Balmer, M. E.; Buser, H.-R.; Müller, M. D.; Poiger, T., Occurrence of some organic UV filters in wastewater, in surface waters, and in fish from Swiss lakes. Environmental science & technology 2005, 39 (4), 953-962. 20. Calafat, A. M.; Ye, X.; Wong, L.-Y.; Reidy, J. A.; Needham, L. L., Exposure of the US population to bisphenol A and 4-tertiary-octylphenol: 2003–2004. Environmental health perspectives 2008, 116 (1), 39. 21. Daughton, C. G.; Ternes, T. A., Pharmaceuticals and personal care products in the environment: agents of subtle change Environmental health perspectives 1999, 107 (Suppl 6), 907. 22. Balmer, M.; Buser, H.; Müller, M.; Poiger, T., Occurrence of the organic UV filter compounds BP-3, 4-MBC, EHMC, and OC in wastewater, surface waters, and in fish from Swiss lakes. Agroscope, Swiss Federal Research Station for Horticulture. Plant Protection Chemistry 2004. 23. Gonzalez, M.; Gallego, M.; Valcarcel, M., Gas chromatographic flow method for the preconcentration and simultaneous determination of antioxidant and preservative additives in fatty foods. Journal of Chromatography A 1999, 848 (1), 529-536. 24. Wang, L.; Zhang, X.; Wang, Y.; Wang, W., Simultaneous determination of preservatives in soft drinks, yogurts and sauces bElectrochemistry Communications 2009, 11 (4), 889-892. 51. Hummers Jr, W. S.; Offeman, R. E., Preparation of graphitic oxide. Journal of the American Chemical Society 1958, 80 (6), 1339-1339. 52. Li, D.; Kaner, R. B., Graphene-based materials. Nat Nanotechnol 2008, 3, 101. 53. Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M., Improved synthesis of graphene oxide. Acs Nano 2010, 4 (8), 4806-4814. 54. Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B., High-throughput solution processing of large-scale graphene. Nature nanotechnology 2008, 4 (1), 25-29. 55. Ponnusamy, V. K.; Jen, J., A novel graphene nanosheets coated stainless steel fiber for microwave assisted headspace solid phase microextraction of organochlorine pesticides in aqueous samples followed by gas chromatography with electron capture detection. Journal of Chromatography A 2011, 1218 (39), 6861-6868. 56. Terasawa, T.-o.; Saiki, K., Growth of graphene on Cu by plasma enhanced chemical vapor deposition. Carbon 2012, 50 (3), 869-874. 57. He, H.; Klinowski, J.; Forster, M.; Lerf, A., A new structural model for graphite oxide. Chemical Physics Letters 1998, 287 (1), 53-56.58. Xu, Y.; Bai, H.; Lu, G.; Li, C.; Shi, G., Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. Journal of the American Chemical Society 2008, 130 (18), 5856-5857. 59. Zhang, H.; Low, W. P.; Lee, H. K., Evaluation of sulfonated graphene sheets as sorbent for micro-solid-phase extraction combined with gas chromatography–mass spectrometry. Journal of Chromatography A 2012, 1233, 16-21. 60. Roman, I. P.; Chisvert, A.; Canals, A., Dispersive solid-phase extraction based on oleic acid-coated magnetic nanoparticles followed by gas chromatography-mass spectrometry for UV-filter determination in water samples. Journal of chromatography. A 2011, 1218 (18), 2467-75. 61. Kim, M.; Hwang, Y.; Kim, J., Fabrication of graphene–carbon nanotube papers decorated with manganese oxide nanoneedles on the graphene sheets for supercapacitors. Physical Chemistry Chemical Physics 2014, 16 (1), 351-361. 62. Ramanathan, T.; Fisher, F.; Ruoff, R.; Brinson, L., Amino-functionalized carbon nanotubes for binding to polymers and biological systems. Chemistry of Materials 2005, 17 (6), 1290-1295. 63. Hu, H.; Zhao, Z.; Wan, W.; Gogotsi, Y.; Qiu, J., Ultralight and highly compressible graphene aerogels. Advanced materials 2013, 25 (15), 2219-2223. 64. Giokas, D. L.; Sakkas, V. A.; Albanis, T. A., Determination of residues of UV filters in natural waters by solid-phase extraction coupled to liquid chromatography–photodiode array detection and gas chromatography–mass spectrometry. Journal of Chromatography A 2004, 1026 (1), 289-293. 65. Vela-Soria, F.; Ballesteros, O.; Zafra-Gomez, A.; Ballesteros, L.;Navalon, A., A new method for the determination of benzophenone-UV filters in human serum samples by dispersive liquid-liquid microextraction with liquid chromatography-tandem mass spectrometry. Talanta 2014, 121, 97-104. 66. Ye, L.; Liu, J.; Yang, X.; Peng, Y.; Xu, L., Orthogonal array design for the optimization of ionic liquid-based dispersive liquid-liquid microextraction of benzophenone-type UV filters. Journal of separation science 2011, 34 (6), 700-6. 67. Oliveira, H. M.; Segundo, M. A.; Lima, J. L.; Miro, M.; Cerda, V.,On-line renewable solid-phase extraction hyphenated to liquid chromatography for the determination of UV filters using bead injection and multisyringe-lab-on-valve approach. Journal of chromatography. A 2010, 1217 (22), 3575-82. 68. Giokas, D. L.; Zhu, Q.; Pan, Q.; Chisvert, A., Cloud point-dispersive mu-solid phase extraction of hydrophobic organic compounds onto highly hydrophobic core-shell Fe2O3@C magnetic nanoparticles. Journal of chromatography. A 2012, 1251, 33-9.
摘要: In the present study, a novel porous graphene microspheres for dispersive micro-solid phase extraction(D-μ-SPE)was developed to collect UV-filters in aqueous sample followed with HPLC-UV analysis. In this method, the easily dispersible porous graphene microspheres was synthesized and utilized as mirco-sorbent filled in a newly designed syring filter extraction device to extract UV filters from aqueous samples. After optimization, the maximum extraction efficiency was obtained under the selected condition as follows; 50 mL of aqueous sample (pH 5) was extracted by flowing through with 4 mg of porous graphene microspheres sorbent taken in the extraction device under the flow rate of 10 mL/min and followed by desorption using 80 μL of acetonitrile. Under the optimal conditions, the liner ranges were 0.1-40 ng mL-1 for five UV-filters. Detection limits were achieved at level of 0.04-0.06 ng mL-1. The recoveries of swimming pool water samples were between 91.3-108.7 % and RSD were below 9.4%. The results demonstrated that the proposed method was a simple, sensitive and eco-friendly approach for the determination of UV-filters in aqueous samples.
本研究開發石墨烯多孔微球,作為一種分散式微固相萃取(D-μ-SPE)的吸附材料,用於萃取水樣中的紫外線吸收劑,並以高效能液相層析儀紫外光偵測器分析其含量。石墨烯多孔微球的製備是先將氧化石墨烯與乙二胺聚合,再加入還原劑後合成出石墨烯多孔微球吸附劑。萃取時在針筒前裝置兩個串聯的針筒過濾器,並將石墨烯多孔微球置於兩個針筒過濾器之間,使用針筒注射幫浦將樣品溶液穩定地抽入與推出針筒,當分析物通過針筒過濾器就會被石墨烯多孔微球所吸附,並利用上抽下推時的衝力使吸附劑加以擾動達到分散的效果,接著使用溶劑脫附石墨烯上之紫外線吸收劑,以 HPLC-UV 進行分析。為獲得最佳的萃取效果,研究中探討影響萃取效果的主要影響因素,如樣品溶液 pH 值、通過速率、鹽類影響及脫附溶劑種類與用量等。結果顯示在水樣 pH 5 時,並以 80 μL 乙腈進行脫附,以速率 10mL/min 通過分散式石墨烯微球進行微萃取可獲得最佳萃取效果。在此最佳化條件下對五種紫外線吸收劑進行檢測,其線性範圍為 0.1-40 ng mL-1,線性相關係數為 0.9969 以上,各化合物定量極限介於 0.1-0.2 ng mL-1,偵測極限介於 0.04-0.06 ng mL-1,RSD 低於 6.9%。以本方法分析台中某游泳池池水可測得 BP、HMB、4-MBC 的含量分別為 2.0、1.1 及 0.9 ng mL-1。其回收率介於 91.3% 至 108.7% 之間。實驗證明本研究開發之石墨烯多孔微球結合分散式微固 相萃取技術,其裝置簡單、操作方便、可多次利用並且僅使用少量的有機溶劑,此方法具有簡單、方便、高靈敏度及對環境友善之特點。
URI: http://hdl.handle.net/11455/90687
文章公開時間: 10000-01-01
Appears in Collections:化學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.