Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90892
標題: 新型震盪水柱式波能擷取裝置之水動力研究
Hydrodynamic Characteristics of a New Type of Wave Energy Absorber with Oscillating Water Column
作者: 羅元廷
Yuan-Ting Luo
關鍵字: Wave energy converter;Flow-3D;Amplification factor;OWC
震盪水柱式波能擷取裝置;流場;風場;擷取功率;放大因子
引用: 1. 林繼謙。2009。岸機震盪水柱式波浪發電系統之設計。碩士論文。台南:成功大學系統船舶機電工程研究所。 2. Brendmo, A., Falnes, J., et al. (1996), 'Linear Modelling of Oscillating Water Columns including Viscous Losses,' Applied Ocean Research 18: 65-75. 3. Dorrell, D. G., Hsieh, M. F., and Lin C. C., (2010), 'A Small Segmented Oscillating Water Column Using a Savonius Rotor Turbine,' IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 46, NO. 5 4. Evans, D. V., (1980), 'Some Analytic Results for Two and Three Dimensional Wave-energy Absorbers,' In Power from Sea Waves (Ed. B.M. Count), pp. 213-249. 5. Evans, D. V., O'Gallachoir, B.P., Porter, R., Thomas, G. P., (1995), 'On the optimal design of an oscillating water column device,' In Proceedings of the Second European Wave Power Conference, Lisbon, Portugal, pp. 172–178. 6. Falc?o, A. F., (2000). 'The shoreline OWC wave power plant at the Azores,'. Proc 4th European Wave Power Conf, University of Aalborg, Denmark, paper B1. 7. Fleming, A., Penesis, I., Macfarlane, G., Bose, N., Denniss, T., (2012), 'Energy balance analysis for an oscillating water column wave energy converter,' Ocean Engineering, Vol. 54, pp. 26-33. 8. IEA-OES., (2006), 'Review and analysis of ocean energy systems development and supporting policies,' IEA-Ocean Energy System Implementing Agreement site, Retrieved 2008. 9. IEA-OES., (2011), 'An International Vision for Ocean Energy, ' IEA-Ocean Energy System Implementing Agreement site, Retrieved 2011. 10. IEA-OES., (2013), 'Annual Report,' IEA-Ocean Energy System Implementing Agreement site, Retrieved 2013. 11. Takahashi, S., Nakada, H., Ohneda, H., and Shikamori, M., (1992) 'Wave Power Conversion by a Prototype Wave Power Extracting Caisson in Sakata Port,' Proc 23rd ICCE, Venice, Italy, pp. 3440-3453. 12. Healy, J. J., 'Wave damping effect of beaches,' Proc. Minnesota Intl. Hydraulics Conversion, pp. 213-220(1953). 13. Tseng, R. S., Wu, R. H., Huang, C. C., (1998) 'Model study of a shore-line wave power system' Ocean Engineer, Vol. 27, pp. 801-821. 14. Weber, J.W., Thomas, G.P., (2001), 'An Investigation into the Importance of the Air Chamber Design of an Oscillating Water Column Wave Energy Device,' The International Society of Offshore and Polar Engineers, ISBN 1-880653-51-6. 15. Whittaker, T.J.T., Folley, M., (2002), 'Identification of non-linear flow characteristics of the LIMPET shoreline OWC,' The International Society of Offshore and Polar Engineers, ISBN 1-880653-58-3. 16. Whittaker, T. J. T., Folley, M., Boake, C., Wright, A., and Osterried, M., 'THE LIMPET WAVE POWER PROJECT – THE FIRST YEARS OF OPERATION,' Faculty of Engineering, Queen's University Belfast. 17. Ya-ge, Y., Yong-hong, Z., Yong-ming, S., Bi-jun, W. and Rang, L., (2002), 'Wave Energy Study in China Advancements and Perspectives,' China Ocean Engineering, VOL. 17, NO. 1, PP. 101-109.
摘要: 波浪發電裝置的研究在各國早已行之有年,在眾多波能發電裝置中又以震盪水柱式(Oscillating Water Column, OWC)裝置之發展最久也有最多研究探討。本研究旨在研究新型波能擷取裝置之水理特性,以數值模擬及模型試驗方式進行之。數值模擬係使用Flow-3D流體動力軟體計算波能擷取裝置之波流場及風場變化,其中以one fluid模式計算流場及震盪水柱之波形變化,而風場和開孔風速之變化則以two fluid模式模擬。模型試驗則是量測裝置中氣室震盪水柱之水位變化及開孔處之風速,實驗並分別對流場和風場作可視化拍攝。由與試驗結果比較,顯示本研究之數值模擬在流場、風場及水柱波形特性相當一致。經由研究結果顯示,裝置內水柱在震盪時將會壓縮空氣並於上方開孔處產生風速,當水柱水位上升時空氣將會自開孔流出;水位下降時空氣則會自開孔處流入。而由於新型裝置之水柱及波形變化相當穩定,因此裝置內受到水柱壓縮所產生的風速亦具有穩定之特性。本文在不同波浪條件下,比較裝置所產生的風速及風能關係,結果發現,相同週期下當入射波高愈大產生的風速便愈大而風能表現也較佳。另外在相同入射波高條件下則發現,波浪尖銳度愈小裝置所表現之風能則愈好。本文更進一步與傳統OWC裝置比較,結果發現本研究之波能擷取裝置有更佳的風能擷取表現及較小的波浪反射率。
URI: http://hdl.handle.net/11455/90892
其他識別: U0005-2811201416194526
文章公開時間: 2016-08-31
Appears in Collections:土木工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.