Please use this identifier to cite or link to this item:
標題: 波浪通過系列潛堤之布拉格反射研究
Study on Bragg Reflection of Waves by the Series of Submerged Breakwaters
作者: 劉儀邦
Yi-Bang Liu
關鍵字: Bragg
the series of breakwaters
引用: 1. Bailard, J.A., Deveries, J.W., Kirby J.T., and Guza, R.T., (1990). Bragg reflection breakwater : A new shore protection method. Proc.22nd International Conference on Coastal Engineering, ASCE, 1702-1715. 2. Berkhoff, J. C. W., (1972). Computation of combined refraction-diffraction. Proc 13nd International Conference on Coastal Engineering, ASCE, 471-490. 3. Chang, K.-A., Hsu, T.-J., Liu, P.L.-F., (2005). Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle. Part II: Cnoidal waves., Coast. Eng., 52, 257-283. 4. Davies, A. G., and Heathershaw, A.D., (1984). Surface wave propagation over sinusoidally varying topography. Fluid Mechanics, 144:419-443. 5. Goda,Y., and Suzuki, Y., (1976). Estimation of Incident and Reflection Waves in Random Wave Experiments. Proceedings of the 15th International Conference on Coastal Engineering, ASCE, Hawaii, 628-650. 6. Healy, J. J., (1952). Wave damping effect of beaches. Proc. Minnesota Intl. Hydraulics Convention, 213-220. 7. Hsu, T. W., and Wen, C.C., (2001). A model equation extended to account for rapidly varying topography. Ocean Engineering, 28:1479-1498. 8. Hirt, C.W., and Nichols, B.D., (1981). Volume of fluid method for the dynamics of free boundaries. Journal of Computational Physics,39: 201-225. 9. Hirt, C.W., Sicilian, J.M., (1984). An efficient computation scheme for tracking contaminant concentrations in fluid flows. Journal of Computational Physics, 56:428-447. 10. Hsu, T. W., and Wen, C.C., (2001). A model equation extended to account for rapidly varying topography. Ocean Engineering, 28:1479-1498. 11. Hsu T.W., Tsai L.H. and Huang Y.T. (2003). Bragg Scattering of Water Waves by MultiplyComposite Artificial Bars. Coastal EngineeringJournal, 45(2):1-19. 12. Hsu, T. W., Hsiao, S. C., Ou, S. H., Wang, S. K., Yang, B. D., and Chou, S. E., (2007). An application of Boussinesq equations to Bragg reflection of irregular waves. Ocean Engineering, 34:870-883 13. Hsieh, C. M., (2012). Numerical study on progressive waves over artificial beds. Environmental Engineering and Technology, 1 (4):11-19. 14. Kirby, J. T., (1986). A general wave equation for wave over rippled beds. Fluid Mechanics, 162:171-186. 15. Kirby, J.T., (1989). A Note on Parabolic Radiation Boundary Conditions for Elliptic Wave Calculations. Coastal Engineering, 13:211-218. 16. Kirby, J.T., and Anton, J.P., (1990). Bragg reflection of waves by artificial bars. Proc. of the 22nd International Conference on Coastal Engineering, ASCE, 757-768. 17. Mase, H., Oki, S.I., and Takeba, K., (1995). Wave equation over permeable rippled bed and analysis of bragg scattering of surface gravity waves. Journal of Hydraulic Research, 33 (6):789-812. 18. Miles, J.W., (1981). Oblique surface-wave diffraction by a cylindrical obstacle. Dynamics of Atmospheres and Oceans, 6:279-289. 19. Suh, K.D., Lee, C., and Part, W.S., (1997). Time-dependent equations for wave propagation on rapidly varying topography. Coastal Engineering, 32:91-117. 20. Zhang, L., Kim, M.H., Zhang, J., and Edge, B.L., (1999). Hybrid model foe bragg scattering of waves by steep multiply-sinusoidal bars. J. of Coastal Research, 15(2):486-495. 21. Zou, Z.L., Liu, Z.B., and Fang, K.Z., (2009). Further improvements to the higher-order Boussinesq equations:Bragg reflection. Coastal Engineering, 56:672-687. 22. 陳陽益、湯麟武(1990),「波床底床上規則前進重力波之解析」,第十二屆海洋工程研討會論文集,台灣台北,第 270-305 頁。 23. 陳陽益(1991),「波形底床上規則重力波之解析(2)」,港灣技術第六期,第55-83 頁。 24. 陳陽益(1991b),「自由表面規則前進重力波傳遞於波形底床上共振現象」,第十五屆全國力學會議論文集,台灣台南,第 289-296 頁 。 25. 張憲國、許泰文、李逸信(1997),「波浪通過人工沙洲之試驗研」,第十九屆海洋工程研討會論文集,臺灣臺中,第 242-249頁。 26. 郭金棟、陳文俊、陳國書(1999),「雙列潛堤對海灘防治效益之研究」,第二十一屆海洋工程研討會論文集,台灣新竹,第 307-313 頁。 27. 蔡立宏(2003),「波浪通過系列潛堤之布拉格反射研究」,國立成功大學水利及海洋工程研究所博士論文,台南。 28. 蔡立宏,許泰文,黃盈純(2003),「波浪通過複合式系列潛堤之布拉格反射研究」,第25 屆海洋工程研討會論文集,國立台灣海洋大學,第 467-474。 29. 許泰文,楊炳達,周世恩,曾以帆(2004a),「Boussinesq方程式應用於波浪布拉格反射之研究」,海洋工程學刊,第 3 卷,第 2 期,第 1-24 頁 30. 黃清和,溫志中,蔡立宏,廖學瑞(2004),「波浪通過系列潛堤之布拉格反射特性研究」,第26屆海洋工程研討會論文集,國立台灣大學,第339-345頁。 31. 楊定毅(2011),「Cn波通過透水與不透水潛堤之數值研究」,國立成功大學水利及海洋工程研究所碩士論文,台南。 32. 吳昀達(2015),「長波與海岸結構物互制之研究」,國立成功大學水利及海洋工程研究所博士論文,台南。
摘要: 本研究旨在使用數值方法模擬波浪發生布拉格反射時作用於孔隙系列潛堤的波、流場變化,並探討波浪反射率及波浪通過潛堤後之渦度、紊流能量與消散變化特性。數值模擬係藉由FLOW-3D以質量及動量方程式與標準 紊流模式為基礎,使用有限差分法配合FAVOR處理技術及流體體積法模擬計算。 本文先以前人之試驗驗證數值模式之精度,包括孤立波通過孔隙潛堤時的流場和Cn波的波、流場。再將此數值模式模擬前人所做之人工系列潛堤的試驗,並讓所有模擬波浪條件皆滿足布拉格反射潛堤間距S等於入射波浪半波長的共振條件,固定水深h、波高H,探討改變週期T時波浪通過系列潛堤所發生的波、流場及波浪通過潛堤後之渦度、紊流能量與消散變化特性,最後再加以討論滿足布拉格反射條件下隨著週期改變的反射率、透射率及能量損失的變化。而從模擬結果發現在滿足布拉格反射條件下隨著週期的變大,能損會隨之變大。反射率也會隨著週期的改變而變動,在本研究的研究條件中隨著週期的變大,反射率值呈現出先變大再變小的趨勢。
The purpose of this paper is to investigate numerically the wave and flow characteristics of the Bragg reflection of Waves by the series of submerged breakwaters with wave chamber, including wave reflection, vortices, turbulent energy and dissipation. A computational fluid dynamic model, Flow-3D, was applied to the numerical simulation based on the three-dimensional RANS equation associated with the standard turbulent model. It is based on the finite difference method with the use of technology of FAVOR and the volume of fluid method processing calculations. This article first test to verify the accuracy of previous numerical model of the person, including the flow field of the solitary wave passed by the porosity submerged breakwaters and Cnoidal wave. Then this numerical model simulation made of artificial previous test the series of submerged breakwater and allow all the wave conditions are satisfied with Bragg reflection of the incident wave resonance condition ; the spacing of the breakwaters S is equal to half the wavelength. Fixed with depth h and wave height H, to explore the flow field of the wave through the series of submerged breakwaters and the vorticity, turbulent energy and dissipation characteristics change of the wave passed by the series of submerged breakwaters , changing the period T. Finally discussing the conditions under Bragg reflection period with the change in reflectivity, and the change in transmission and energy loss. From simulation results under the condition of satisfied with Bragg reflection with the period of change, energy loss would be bigger. The conditions in this study with the change of period the reflectivity will change , and the trends will be larger in smaller.
其他識別: U0005-2708201522142500
文章公開時間: 2018-08-28
Appears in Collections:土木工程學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.