Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/9100
標題: 以數位訊號控制器為基礎的球型機器人智慧型自適應運動控制
Intelligent Adaptive Motion Control for Ball Robots Using Digital Signal Controllers
作者: 詹程凱
Chan, Cheng-Kai
關鍵字: 遞迴區間第二類模糊類神精網路
RIT2FNN
滾球機器人
騎球型機器人
拉格朗日力學
倒逆步控制
順滑模式控制
點穩定
軌跡追踪
ballbot
ball-riding robot
Lagrangian mechanics
backstepping control
sliding-mode control
point stabilization
trajectory tracking
出版社: 電機工程學系所
引用: [1] F. Grasser, A.D’Arrigo, and S. Colombi, “JOE: A mobile, inverted pendulum,” IEEE Trans. Industrial Electronics, vol.49, no.1, pp.107-114, February 2002. [2] D. Voth, “Segway to the future,” Intelligent Systems, IEEE [see also IEEE Intelligent Systems and Their Applications] vol.20, no.3, pp.5 – 8, May-June 2005. [3] C.C Tsai, S.C. Lin and W.L. Luo, “Adaptive steering of a self-balancing two-wheeled transporter," in Proc. 2006 CACS Automatic Control, Tamsui, Taiwan, November 10-11, 2006. [4] C. C. Tsai, H. C. Huang, S. C. Lin, " Adaptive neural network control of a Self-balancing Two-wheeled Scooter," IEEE Transactions on Industrial Electronics, vol. 57, no. 4, pp.1420-1428, April 2010 [5] T. B. Lauwers, G. A. Kantor, and R. L. Hollis, “A dynamical stable single-wheeled mobile robot with Inverse mouse-ball drive,” Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, USA, pp. 2884-2889, 2006. [6] R. Hollis, “Ballbots,” Scientific American Magazine, pp. 72-77, October 2006. [7] J. S. Shaw and B. K. Huang, “Balancing and trajectory tracking control for ball robot, "in Proc. of The 27th Chinese Institute of Engineers Conference, B17-0046, November 2007. [8] C. W. Liao, C. C. Tsai, Y. Y. Li, C.-K. Chan, “Dynamic modeling and sliding-mode control of a ball robot with inverse mouse-ball drive,” Proceedings of SICE 2008, Tokyo, Japan, pp. 2951-2955, 2008. [9] U. Nagarajan and A. Mampetta, G. A. Kantor and R. L. Hollis, “State transition, balancing, station keeping, and yaw control for a dynamically stable single spherical wheel mobile robot” in Proc. IEEE Int. Conf. Robot. and Autom., pp. 998-1003, 2009. [10] U. Nagarajan, G. A. Kantor and R. L. Hollis, “Trajectory planning and control of an underactuated dynamically stable single spherical wheeled mobile robot” in Proc. IEEE Int. Conf. Robot. and Autom., pp. 3743-3748, 2009. [11] U. Nagarajan, G. Kantor and R. Hollis, “Hybrid control for navigation of shape-accelerated underactuated balancing systems,” in Proc. IEEE Int. Conf. Decision And Control., pp. 3566-3571, 2010. [12] C.C. Tsai, M.-H. Juang, C.-K. Chan, C.-W. Liao and S.-J. Chan, “Self-balancing and position control using multi-loop approach for ball robots,” Proc. of the 2010 International Conference on System Science and Engineering, Taipei, Taiwan, July 2010. [13] M. Kumagai, T. Ochiai, “Development of a robot balancing on a ball,” Proceedings of 2008 International Conference on Control, Automation and Systems, pp.433-438, October 2008. [14] M. Kumagai and T. Ochiai, “Development of a robot balancing on a ball- application of passive motion transportation,” in Proc. IEEE Int. Conf. Robot. And Autom., pp. 4106-4111, 2009. [15] Weiss, R. G. Langlois, and M. J. D. Hayes, “The effects of dual row omnidirectional wheels on the kinematics of the atlas spherical motion platform,” Mechanism and Machine Theory, vol. 44, pp. 349-358, 2009 [16] http://rezero.ethz.ch/project_en.html [online] 2011-07. [17] C. C. Tsai ,C. K. Chan, L. C. Kuo, “LQR motion control of a ball-riding robot,” Proc. of 2012 IEEE International Conference on Advanced Intelligent Mechatronics, Kaohsiung, Taiwan, 11-14 July, 2012. [18] J.C. Lo and Y. H. Kuo, “Decoupled fuzzy sliding-mode control, ”IEEE Transactions on Fuzzy Systems, vol. 6, no. 3, pp. 426-435. August 1998. [19] W.Wang, J.Yi, D.Rhao, and D.Liu, “Design of a stable sliding-mode controller for a class of second-order underactuated systems,” IEEE Proc. of Control Theory and Applications, vol.151, pp. 683-690, November 2004. [20] C. M. Lin and Y.J. Mon, “Decoupling control by hierarchical fuzzy sliding-mode controller,” IEEE Transactions on Control Systems Technology, vol. 13, no. 4, pp. 593-598, July 2005. [21] Wang, X.D. Liu, and J.Q. Yi, “Structure design of two types of sliding-mode controllers for a class of under-actuated mechanical systems,” IET Proceeding of Control Theory and Applications, vol. 1, no. 1, pp. 163-172, 2007. [22] R.-J. Wai, M.-A. Kuo, and J.-D. Lee, “Cascade direct adaptive fuzzy control design for a nonlinear two-axis inverted-pendulum servomechanism,” IEEE Transactions on Systems., Man, and Cybernetics-Part-B, vol. 38, no. 2, pp. 439–454, April 2008. [23] X.-Z. Lai, J.-H. She, S. X. Yang, and M. Wu, “Comprehensive unified control strategy for underactuated two-link manipulators,” IEEE Transactions on Systems., Man, and Cybernetics-Part-B, vol. 39, no. 2, pp. 389–398, April 2009. [24] J. S. Shaw and P. K. Huang, “球型機器人智慧型控制策略,” in Proc. of 2009 National Symposium on System Science and Engineering, Tamkang University, Tamsui, Taiwan, pp. 1167-1171, 26 June, 2009. [25] C.K. Chan, C. C. Tsai, “Intelligent backstepping sliding-mode control using recurrent interval type 2 fuzzy neural networks for a ball robot with a four-motor inverse-mouse ball drive,” Proceedings of SICE 2012 Annual conference, Akita, Japan, 20-23 August, 2012. [26] C.K. Chan, C. C. Tsai, “Intelligent backstepping sliding-mode control using recurrent interval type 2 fuzzy neural networks for a ball-riding robot,” Proceedings of IFUZZY 2012 Annual conference, Taichung, Taiwan, 16-18 November, 2012. [27] C.K. Chan, C. C. Tsai, “Direct adaptive recurrent interval type 2 fuzzy neural networks for a Ball Robot with a Four-Motor Inverse-Mouse Ball Drive,” Proceedings of ARIS 2013 Annual conference, Tainan, Taiwan, June 2013. [28] M. Krstic, I. Kanellakopoulos, and P. V. Kokotovic, Nonlinear and Adaptive Control Design, New York: Wiley, 1995. [29] K. J. Astrom and B. Wittenmark, Adaptive control, 2nd Ed., Addiosn Wesley, 1995. [30] M. Hojati and S. Gazor, “Hybrid adaptive fuzzy identification and control of nonlinear systems,” IEEE Transactions on Fuzzy Systems, vol. 10, no. 2, April 2002. [31] L. X. Wang, “Stable adaptive fuzzy controllers with application to inverted pendulum tracking,” IEEE Transactions on Fuzzy Systems, Man, And Cybernetics-Part B: Cybernetics, vol. 26, no. 5, October 1996. [32] N. Karnik, J. M. Mendel and Q. Liang, “Type-2 fuzzy logic systems,” IEEE Transaction Fuzzy Systems, vol. 7, no. 6, pp. 643-658, 1999. [33] Q. Liang and J. M. Mendel, “Interval type-2 logic systems: theory and design,” IEEE Trans. Fuzzy Syst., vol. 8, pp.535-550, 2000. [34] C. H. Lee, Y. C. Lin, and W. Y. Lai, “Systems identification using type-2fuzzy neural network (type-2 FNN) systems,” in Proc. IEEE Int. Symp.Comput. Intell. Robot. Autom., vol. 3, pp. 1264–1269, 2003. [35] J. M. Mendel, “Computing derivatives in interval type-2 fuzzy logic system,” IEEE Trans. Fuzzy Syst., vol. 12, no. 1, pp. 84–98, February 2004. [36] C. Wang, C. Cheng and T. Lee, “Dynamical optimal training for interval type-2 fuzzy neural network (T2FNN),” IEEE Trans. Syst., Man, Cybern. –Part B, vol. 34, no. 3, pp. 1472-1477, June 2004. [37] C. F. Juang, R. B. Huang, and W. Y. Cheng, “An interval type-2 fuzzy neural network with support vector regression for noisy regression problems,” IEEE Trans. Fuzzy Syst., vol. 18, no. 4, pp. 686–699, August 2010. [38] C. H. Lee, H. H. Chang, C. T. Kuo, J. C. Chien, and T. W. Hu, “A novel recurrent interval type-2 fuzzy neural network for nonlinear channel equalization,” in Proc. Int. Muticonf. Eng. Computer Scientists, vol. 1, pp. 1231–1240, 18–20 March, 2009. [39] N. E. Cotter, "The stone-weierstrass theorem and its application to neural networks," IEEE Trans. Neural Networks, vol. 1, no. 4, pp. 290-295, December 1990. [40] Baruh, Analytical Dynamics, New York: McGraw-Hill Inc., 1999. [41] J. H. Williams, Jr., Fundamentals of applied dynamics, John Wiley & Sons Inc., 1996. [42] H. K. Khalil, Nonlinear systems, 3rd Ed., Prentice Hall, 2002.
摘要: 本論文的目的是在探討應用遞迴區間第二型模糊類神經網路(RIT2FNN)於兩種球型機器人平台之自平衡與軌跡追蹤之智慧型適應性控制方法與其軟硬體製作技術。為解決兩種球型機器人之系統參數不確定性及其他非線性特性,本文提出四種以RIT2FNN為基礎的智慧型適應性控制方法,並對其強健性、適應性等主要特性做詳盡之研究, 並用以達成原地平衡,位置控制以及軌跡追蹤。在運動控制器方面,為達成時變軌跡追蹤控制的目標,該機器人的非線性模型被採用並整合不確定系數項,結合倒逆步與順滑模式控制法,發展一新式的合計階層式順滑模式控制。在硬體實作方面,文中詳細描述兩種球型機器人的新型驅動機構、傾斜與傾斜率感測電路與伺服馬達驅動以及其控制系統架構。 文中提出分別應用於兩種球型機器人平台之智慧型適應性控制方法,來提高系統可控與穩定性,其一是使用適應性倒逆步可變結構帶RIT2FNN補償器控制器應用在球型機器人,其二是使用直接適應性RIT2FNN控制器應用在球型機器人,其三是使用適應性倒逆步可變結構帶RIT2FNN補償器控制器應用在騎球型機器人,其四是使用直接適應性RIT2FNN學習型控制器應用在騎球型機器人。透過電腦軟體模擬以及比較其他控制方法之結果證實可確認兩類球型機器人系統可達到預期控制性能之平台運動控制目標,且本論文所提之控制法則具有較優越的控制性能。再經由實驗證實以上這四種控制方法不但可以使兩類球型機器人系統可達到預期控制性能之平台運動控制目標,而且可確認其強健性能與實用性。
This dissertation presents intelligent adaptive controllers using recurrent-interval-type-II-fuzzy-neural-networks (RIT2FNN) and their hardware implementations for station keeping, position control and trajectory tracking of two kinds of ball robots, ballbot and ball-riding robot. For the purpose of achieving the control goals for each robotic system, nonlinear model of the robotic system with parameter variations modeling uncertainties and other non-linear characteristics are decomposed into nominal and unmodeling parts, two RIT2FNN based intelligent adaptive controllers are proposed by using backstepping techniques and hierarchical aggregated sliding-model control approaches, and their performance and robustness properties are well investigated. The two RIT2FNN-based controllers fall into two categories: nonlinear control augmented with the RIT2FNN, and direct adaptive RIT2FNN-based control. Simulations and experimental results are conducted on the experimental ballbot and ball-riding robots, which are respectively equipped with a new driving mechanism and a control system; the control system is composed of a digital signal controllers, one tilt sensor and one rate gyro with interfacing circuits, and DC servomotors driving modules. The comparative studies via simulations show that the proposed controllers outperform other existing controllers. Experimental results exemplify the performance and applicability of the proposed controllers together with the built robotic systems.
URI: http://hdl.handle.net/11455/9100
其他識別: U0005-2208201322180300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2208201322180300
Appears in Collections:電機工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.