請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/91029
標題: 台灣降雨沖蝕指數圖之修訂及最大三十分鐘降雨強度之推估
Revision of rainfall erosivity map in Taiwan and simplified estimation of maximum 30-min rainfall intensity
作者: 吳佩儒
Pei-Ju Wu
關鍵字: Effective rainfall amount
Rainfall erosion index
Maximum 30-min rainfall intensity (I30)
Maximum hourly rainfall intensity (I60)
Taiwan
Revision of rainfall erosivity map
有效降雨量
降雨沖蝕指數
最大30分鐘降雨強度(I30)
最大時降雨強度(I60)
台灣
年等降雨沖蝕指數圖
引用: 1. 伍婉貞(1991),台北市區自然降雨動能及其降雨強度之關係,國立台灣大學農業工程所碩士論文。 2. 吳上智(1997),台灣中北部與美國地區雨滴粒徑分佈及沖蝕性之研究,國立中興大學土木工程學研究所碩士論文。 3. 吳嘉俊、王阿碧(1996),屏東老埤地區雨滴粒徑與降雨動能之研究,中華水土保持學報27(2):151-165。 4. 吳嘉俊(1996),修正版通用土壤流失公式(RUSLE)簡介,水與土通訊(27):1-3,(28):6-7。 5. 吳藝昀(2004),台灣地區年等降雨沖蝕指數圖之修訂,國立中興大 學土木工程學系碩士論文。 6. 吳岳霖(2007),土壤沖蝕指標模式應用於石門水庫集水區土砂流失量推估之研究,國立中興大學水土保持學系碩士論文。 7. 李明熹、林煥軒、詹于婷(2014),利用日、月及年降雨量估算年降雨沖蝕指數,中華水土保持學報,45(2):103-109。 8. 林俐玲(2004),山坡地保育與利用之探討,國政研究報告,財團法人國家政策研究基金會。 9. 林俐玲、陳品岡(2010),修正版通用土壤流失公式(RUSLE)之簡介,水保技術,5(4):251-257。 10. 范正成、賴仲智(1992),最大三十分鐘降雨強度之評估法,台灣水利40(1):30-44。 11. 范正成、盧光輝(1993),台北地區最大三十分鐘降雨強度與平均降雨強度之關係-量測及分析,行政院國家科學委員會專題研究計畫成果報告。 12. 范正成(1995),土壤沖蝕之預測,通用土壤流失公式在台灣地區應用範例,1-37。 13. 范正成、楊智翔、劉哲欣(2009),台北地區降雨沖蝕指數推估公式之建立及歷年變化趨勢分析,中華水土保持學報,40(2):113-121。 14. 俞俊賓(2008),曾文水庫集水區年降雨沖蝕指數與年降雨量關係之研究,成功大學水利及海洋工程學系碩士在職專班學位論文。 15. 馬明明(1995),台灣中部與台北地區降雨特性及沖蝕性關係之研究,國立中興大學土木工程學研究所碩士論文。 16. 陳威翰(2002),台灣東部地區雨滴粒徑分佈及其沖蝕性研究,國立中興大學土木工程學研究所碩士論文。 17. 陳晉琪(2008),氣候變遷對災害防治衝擊調適與因應策略整合研究子計畫:氣候變遷對坡地土砂災害之衝擊評估(III) ,國科會研究報告。 18. 陳樹群、吳俊毅、吳岳霖、王士豪(2009),GIS 圖層及修正因子建置台灣通用土壤流失公式(TUSLE)–以石門水庫集水區為例,中華水土保持學報,40(2):185-197。 19. 黃俊德(1976),台灣西南部降雨沖蝕指數之研究,中華水土保持學報7(2):90-99。 20. 黃俊德(1976),評估暴風雨特性對土壤沖蝕之影響,國立屏東農專學報17:104-108。 21. 黃俊德(1977),台灣中部降雨沖蝕指數之研究,中華水土保持學報8(1):1-11。 22. 黃俊德(1977),日月潭降雨沖蝕指數之研究,中華水土保持學報8(2):78-84。 23. 楊文仁、范正成、張于漢(2005),台灣北部地區最大三十分鐘降雨強度之分析及預測,農業工程學報,51(3):48-57。 24. 楊斯堯、詹錢登、黃文舜、曾國訓(2010),運用時雨量資料推估降雨沖蝕指數,中華水土保持學報,41(3):189-199。 25. 盧光輝(1999),降雨沖蝕指數之修訂,中華水土保持學報30(2):87-94。 26. Bezdek, J.C. and K. Solomon (1983). The Upper Limit Lognormal Distribution for Drop Size Data. Journal of the Irrigation and Drainage Divison, ASCE, 109(1) : 77-88. 27. Brown, L.C. and Foster, G.R. (1987). Storm erosivity using idealized intensity distributions. Transactions of the ASAE-American Society of Agricultural Engineers (USA). 28. Cerdà, A.(1997). Rainfall Drop Size Distribution in the Western Mediterranean Basin, València, Spain. Catena 30 : 169-182. 29. Coutinho, M.A. and P.P. Tomás (1995) Characterization of Raindrop Size Distribution at the Vale Formoso Experimental Erosion Center. Catena 25, pp.187-197.12. 30. Dadson et al. (2003) Links Between Erosion, Runoff Variability and Seismicity in the Taiwan Orogen. Nature 426, 648-651. 31. Foster et al. (1981) Conversion of the universal soil loss equation to SI metric units, Journal of Soil and Water Conservation 36(6) : 355-359. 32. Huang, C. T. (1984). The Rainfall Erosion Index in Taiwan. Proc. of Sino-Korea Bilateral Symposium on Soil and Water Conservation of Sloped Farm Land. 59-70, National Science Counncil, Taipei. 33. Hudson, N. W. (1965). The influence of rainfall on the mechanics of soil erosion: with particular reference to Southern Rhodesia. 34. Laws, J. O. (1940). Recent Studies in Raindrops and Erosion. Agricultural Engineering, Vol. 21, No. 11, 431-433. 35. Laws, J. O., & Parsons, D. A. (1943). The relation of raindrop‐size to intensity. Eos, Transactions American Geophysical Union, 24(2), 452-460. 36. Low, T. B. and R. List (1982).Collision, Coalescence and Breakup of Raindrops, Part I & II. Journal of the Atmospheric Sci. Vol. 39, 1591-1618. 37. Marshall, J. S. and W. Palmer (1948). Distribution of Raindrop with Size. Journal of Meteorology 5 : 165-166. 38. McGregor, K. C. and C. K. Mutchler (1977). Status of the R Factor in Northern Mississippi. In : Soil erosion : Prediction and control. G. R. Foster, 135-142. Soil Conservation Society of America. 39. Salles, C., J. Poesen and D. Sempere-Torres (2002). Kinetic Energy of Rain and Its Functional Relationship with Intensity. J. Hydrol. 257, 256-270 40. Van Dijk, A.I.J.M., L.A. Bruijnzeel and C.J. Rosewell (2002). Review Rainfall Intensity-Kinetic Energy Relationship: a Critical Literature Appraisal. J. Hydrol. 261, 1-23. 41. Wischmeier, W. H. and D. D. Smith (1958). Rainfall Energy and Its Relationship to Soil Loss, Trans. Am. Geophys. Union 39 : 285-291. 42. Wischmeier, W. H. and D. D. Smith (1978). Predicting Rainfall Erosion Losses – A Guide to Conservation Planning. U.S. Department of Agriculture. Agriculture Handbook No. 537 : 58 pp.
摘要: 台灣地理位置特殊,係位於歐亞板塊及菲律賓板塊之界線上,中央山脈高聳縱貫,山坡地面積分布多於平地,地質構造如斷層、褶曲與節理等特別發達,地質破碎、地震頻繁;且氣候屬於季風氣候區、年雨量充沛,尤其梅雨及颱風等高強度降雨,常引發集水區嚴重土壤沖蝕。欲應用USLE、RUSLE及TUSLE等土壤流失量推估公式,合理推估台灣集水區表土沖蝕量,須就降雨沖蝕指數因子(R),針對全台各分區地域性,探討其降雨特性。 本文將全台劃分10氣候分區,以中央氣象局全台9氣象站及林試所蓮華池研究中心等為代表測站,蒐集其歷年原始降雨紀錄紙、逐時降雨紀錄及逐日降雨紀錄(1975~2014)等觀測資料。經判讀單場有效降雨之最大30分鐘降雨強度(I30)與最大時降雨強度(I60),得知兩者關係極佳,然受地域性與季風氣候及颱風路徑影響顯著,各站比值介於1.22~1.55。 其後,沿用代表測站既有降雨動能公式,分別建立近年(2001~2014)年降雨量與年降雨沖蝕指數關係式,應用於全台中央氣象局與水利署共339自記雨量站,得知其年降雨量與降雨沖蝕指數均值分別為2573 mm及1302 (100ft-tonsin/achryr)(美國本土最大值為550),顯示台灣多雨、高土壤沖蝕能力。此外,近年年降雨量變異性較往年(1975~2000)趨於劇烈,研判係受氣候變遷影響所致。最後,本文提出修訂全台年等降雨沖蝕指數圖,裨益水土保持規劃與集水區泥砂流失推估之參考。
Taiwan's geographical feature is unique. It is located on convergent boundary of the Eurasian plate and the Philippine plate, towering central Mountains stretching from north to south. Hillslope area is more than flatlands with special geological structures are developed such as faults, folds and joints, so the land is fractal and earthquakes occur frequently. The climate of Taiwan belongs to monsoon climate zone with abundant amount of rainfall. In particular, high intensity rainfall induced by monsoon and typhoons, leading to serious soil erosion in catchments. In order to reasonably estimate the amount of soil erosion of catchments in Taiwan with USLE, RUSLE and TUSLE equation, it is necessary to revise the rainfall erosion index (R) for different regional districts. This study divided Taiwan into 10 climate regions. Forty years (1975~2014) of raw rainfall recording sheets, hourly and daily rainfall recordings were collected for 10 stations, including 9 stations of Central Weather Bureau and Lien-Hua Chi of Taiwan Forestry Research Institute Analysis of the maximum 30-min rainfall intensity (I30) and the maximum hourly rainfall intensity (I60) for the rainfall events indicated that I30 and I60 are highly correlated. However, it was also has significant regional, monsoon climate and typhoon route effects. The second objective of this study is to revise the rainfall erosivity map. The relationships between recent annual rainfall and annual rainfall erosion index derived from data for 2001 to 2014 and 10 representative stations were applied in each district of the Central Weather Bureau and Water Resources Agency for 339 precipitation recording stations. The annual rainfall and the average erosion index were 2573 mm and 1302 (100ft-tonsin/achryr), respectively in Taiwan (the maximum value for the United States is 550 100ft-tonsin/achryr), indicating Taiwan is abundant of rainfall with high rainfall erosivity. In addition, the annual rainfall variability in recent years tends is higher than that in previous years (1975 to 2000), which was mainly caused by the impact of climate change. Finally, the annual rainfall erosivity map in Taiwan was revised, which can be used for the soil and water conservation planning and the catchment sediment soil loss estimation.
URI: http://hdl.handle.net/11455/91029
其他識別: U0005-1108201511554800
文章公開時間: 2017-08-25
顯示於類別:土木工程學系所

文件中的檔案:
檔案 大小格式 
nchu-104-7102062043-1.pdf6.49 MBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。