Please use this identifier to cite or link to this item:
標題: 上下游渠床坡度對單階自由跌流水力參數影響之試驗研究
Effects of Upstream and Downstream Channel Bed Slopes on Hydraulic Parameters of Free Overfall Downstream of the Single Step Drop
作者: 黃劼暉
Jie-Hui Huang
關鍵字: Upstream and Downstream Bed Slopes
Impact Hydraulic Parameters
Drop Characteristic Depths
Slope Effect
引用: 1.宋狄晉(2014) ,「非水平式跌流工投潭沖刷機制與應用之試驗研究」,國立中興大學土木工程研究所,碩士論文。 2.余常昭(1999),「明槽急變流理論和在水工中的應用」,清華大學出版社,182-185。 3.徐堯鉉(2010),「超臨界自由跌流沖擊水力特性之研究」,國立中興大學土木工程研究所,碩士論文。 4.張幀幀(2008),「單階自由跌水作用下坡度渠床沖擊特性之試驗研究」,國立中興大學土木工程研究所,碩士論文。 5.陳正炎(1988),「堰壩投潭水躍消能近似解析之研究」,台灣水利季刊,36(4),72-80。 6.陳正炎、郭信成(1994),「堰壩投潭之沖刷坑特性及其坡度效應研究」第七屆水利工程研討會論文集,263-274。 7.陳正炎、蔡建文(1995),「堰壩投潭水流沖擊力之研究」中華水土保持學報,26(2),135-144。 8.陳聖文(2000),「防砂壩下游帶工佈置之試驗研究」,國立中興大學土木工程學系,碩士論文。 9.黃宏信(2010),「自由跌水作用下坡度渠流之水力特性研究」,國立中興大學土木工程學系,博士論文。 10.黃劼暉、謝俊賢、陳正炎(2014),「上下游渠床坡度對投潭水流行為之影響」,水保技術,9(2), 8-15 。 11.劉希羿(2012),「坡度跌流工沖擊流場機制之研究」,國立中興大學土木工程學系,博士論文。 12.蕭品彥(2011),「超臨界自由跌流沖擊流場機制研究與視窗化應用」,國立中興大學土木工程學系,碩士論文。 13.Chanson, H. (1995). 'Hydraulic design of stepped cascades, channels, weirs and spillways,' Pergamon, Oxford, UK. 14.Chanson, H. (1996). 'Discussion on energy loss at drop,' Journal of Hydraulic Research, IAHR, 34(2), 273-278. 15.Chen, J.Y., Yao, C.Y., Liao, Y.Y., and Huang, H.S. (2008). 'Impact force on downstream bed of weir by free overfall flow,' Journal of the Chinese Institute of Engineers, 31(6), 1047-1055. 16.Davis, A.C., Ellett, B.G.S., and Jacob, R.P. (1998). 'Flow measurement in sloping channels with rectangular free overfall,' Journal of Hydraulic Engineering, ASCE, 124(7), 760-763. 17.Davis, A.C., Jacob, R.P., and Ellett, B.G.S. (1999). 'Estimating trajectory of free overfall nappe,' Journal of Hydraulic Engineering, ASCE, 125(1), 79-82. 18.Hager, W. H. (1983). 'Hydraulics of plane free overfall,' Journal of Hydraulic Engineering, ASCE, 109(12), 1683-1697. 19.Ippen, P. J. (1943). Engineering hydraulic, John Wiely and Sons, Inc., New York, 570. 20.Lin, C., Hwung, W.Y., Hsien, S.C., and Chang, K.A. (2007). 'Experimental study on mean velocity characteristics of flow over vertical drop,' Journal of Hydraulic Research, IAHR, 45(1), 33-42. 21.Moore, W.L. (1943). 'Energy loss at the base of a free over-fall,' Transactions, ASCE, 108, 1343-1360. 22.Rajaratnam, N., and Chamani, M.R. (1995). 'Energy loss at drop,' Journal of Hydraulic Research, IAHR, 33(3), 373-384. 23.Rand, W. (1955). 'Flow geometry at straight drop spillways,' Journal of Hydraulic Engineering, ASCE, 81, 1-13. 24.Tokyay, N.D., and Yidiz, D. (2007). 'Characteristics of free overfall for supercritical flows,' Canadian Journal of Civil Engineering, 34(2), 162-169. 25.Vischer, D. L., and Hager, W. H. (1995). 'Energy dissipater,' A. A. Balkema Book Co., Netherlands, 90-92. 26.White, M.P. (1943). 'Discussion on energy loss at the base of a free over-fall,' Transactions, ASCE, 108, 1361-136.
摘要: 本文旨在藉由渠槽試驗獲得經驗迴歸模式,並與理論解析比較,以及案例說明之。研究係採定量清水流及針對不同上、下游渠床坡度(Su 、Sd=0~6%)、跌流高度(H=0.15~0.30 m)及單寬流量(q=0.00251~0.0217 cms/m),組成共180組自由跌流沖擊渠床之渠槽試驗,來探討上下游渠床坡度對單階自由跌流水力參數之影響。文中分析跌流沖擊水力參數包括(1)單寬沖擊力 (Fd)、(2)沖擊位置 (Ld)及(3)沖擊角度 (θ),跌流特徵水深包括(1)跌流工邊緣水深(Yb) 、(2)下游尾水深 (Yt)及(3)水墊區水深 (Yp),提出迴歸經驗模式。同時,進一步將自由跌流沖擊水力參數採用坡度效應包括(1)坡度效應比(δ)及(2)坡度影響值(η)探討其與上、下游渠床坡度Su 、Sd之相關性。 研究結果獲致相對單寬沖擊力(Fd)及相對沖擊位置(Ld)與跌水數(D)及上、下游渠床坡度(Su 、Sd)呈正相關;沖擊角度(θ)與D及Su 、Sd呈負相關;相對跌流工邊緣水深(Yb)與D呈正相關且與Su呈負相關;相對下游尾水深(Yt)及相對水墊區水深(Yp)與D呈正相關,與Su 、Sd為負相關。文中並提出一系列迴歸經驗式及四個案例計算圖示說明,以作為有關自由跌流沖擊水力參數設計參考用。茲以上、下游渠床坡度Su=Sd=6%、跌流高度H=0.30(m),上游水深Y0=0.0249(m)為例,得知(Fd)之具上、下游坡度效應比δab1=1.499及坡度影響值η1=1.125;(Ld )之δab2=1.588及η2=1.400;θ之δab3=0.957及η3=0.986;(Yb)之δa4=0.594,(Yt)之δab5=0.661及η5=1.362及(Yp)之δab6=0.792及η6=0.798。同時,顯示Su影響顯著者為(Fd)、(Ld)及(Yt);反之,Sd對θ及(Yp)影響較顯著。
This study derives the regression equations based on the data collected from the flume experiments, compares them with the theoretically analyzed equations, and illustrates their application with examples. Totally, 180 sets of flume experiments for free overfall flow are carried with clear water under steady conditions for various upstream and downstream bed slopes(Su 、Sd=0~6 %), drop heights(H=0.15~0.30 m ), and unit flow discharges (q=0.00251~0.0217 cms/m) to evaluate the effects of channel bed slopes on the hydraulic parameters. The impact hydraulic parameters include (1) unit impact force(Fd), (2) impact position (Ld), and (3) impact angle (θ). The drop characteristic depths include (1) flow depth at brink (Yb), (2) downstream tailwater depth (Yt), and (3) pool water depth (Yp). Also, the experimental empirical equations are proposed. Furthermore, the relationships of (1) slope effect ratio (δ), and (2) slope influence value (η) with respect to the upstream slope (Su) and downstream slope (Sd) are also discussed. The analyzed results indicate that the relative unit impact force (Fd), and relative impact position (Ld) appear to have positive correlation with the drop number (D), upstream bed slope (Su), and downstream bed slope (Sd). The impact angle θ is negatively correlated with D, Su and Sd. The relative flow depth at brink (Yb) is positively correlated with D but negatively correlated with Su. The relative downstream depth of tailwater (Yt) and relative depth of pool (Yp) are positively correlated with D and negatively correlated with Su and Sd. The study also proposes a series of regression equations and illustrates four cases to explain the application of impact factors for the design purpose. For example with S_u=S_d=6%, drop heights (H) of 0.30 m, upstream water depth (Y0) of 0.0249 m, the upstream and downstream slope effect ratio (δab1) is 1.499, and the slope influence value (η1) equals to 1.125. With the same condition, δab2=1.588 and η2=1.400 for (Ld); δab3=0.957 and η3=0.986 for θ;δa4=0.594 for (Yb); δab5=0.661 and η5=1.362 for Yt; δab6=0.792 and η6=0.798 for Yp. The results indicate that the upstream slope Su has higher effects on (Fd), (Ld), and (Yt), while the downstream slope Sd has higher effects on θ and (Yp).
其他識別: U0005-2406201511175000
文章公開時間: 2016-06-29
Appears in Collections:土木工程學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.