Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91074
標題: 奈米銅電極的製作與在胺基酸檢測之應用
Fabrication of nanostructured copper electrodes for the detection of amino acids
作者: 李名袁
Ming-Yuan Lee
關鍵字: nanostrucures
phosphate
commplex
hydroxide
ionic liquid
amino acid
銅奈米結構
磷酸銅
銅複合物
氫氧化銅
離子液體
胺 基酸
引用: [1] A. Sinha, B.P Sharma, Preparation of copper powder by glycerol process, Mater. Res. Bull. 37 (2002) 407–416. [2] Z. Liu, Y. Bando, A novel method for preparing copper nanorods and nanowires, Adv. Mater. 15 (2003) 303–305. [3] W.Y. Ching, Y.N. Xu, K.W. Wong, Ground-state and optical properties of Cu2O and CuO crystals, Phys. Rev. B 40 (1989) 7684–7695. [4] A.H. Jayatissa, K. Guo, A.C. Jayasuriya, Fabrication of cuprous and cupric oxide thin films by heat treatment, Appl. Surf. Sci. 255 (2009) 9474–9479. [5] J.B. Reitz, E.I. Solomon, Propylene oxidation on copper oxide surfaces: electronic and geometric contributions to reactivity and selectivity, J. Am. Chem. Soc. 120 (1998) 11467–11478. [6] A.B. Kuz'menko, D. van der Marel, P.J.M. van Bentum, E.A. Tishchenko, C. Presura, A.A. Bush, Infrared spectroscopic study of CuO: Signatures of strong spin-phonon interaction and structural distortion, Phys. Rev. B 63 (2001) 094303. [7] S.A. Brazill, P. Singhal, W.G. Kuhr, Detection of native amino acids and peptides utilizing sinusoidal voltammetry, Anal. Chem. 72 (2000)5542–5548. [8] J.M. Zen, C.T. Hsu, A.S. Kumar, H.J. Lyuu, K.Y. Lin, Amino acid analysis using disposable copper nanoparticle plated electrodes,Analyst 129 (2004) 841–845. [9] C.E. Engstrom-Silverman, A.G. Ewing, Copper wire amperometric detector for capillary electrophoresis, J. Microcol. Sep. 3 (1991) 141–145. [10] K. Štulik, V. Pacakova, K. Le, B. Hennisen, Amperometric flow detection with a copper working electrode—response mechanism and application to various compounds, Talanta 35 (1988) 455–460. [11] P. Luo, F. Zhang, R.P. Baldwin, Constant-potential amperometric detection of underivatized amino acids and peptides at a copper electrode, Anal. Chem. 63 (1991) 1702–1707. [12] W.Th. Kok, G. Groenendijk, U.A.Th. Brinkman, R.W. Frei, Determination of oxalic acid in biological matrices by liquid chromatography with amperometric detection, J. Chromatogr. A 315(1984) 271–278. [13] L.A. Colon, R. Dadoo, R.N. Zare, Determination of carbohydrates by capillary zone electrophoresis with amperometric detection at a copper microelectrode, Anal. Chem. 65 (1993) 476–481. [14] H. Kataoka, S. Matsumura, M. Makita, Determination of amino acids in biological fluids by capillary gas chromatography with nitrogen-phosphorus selective detection, J. Pharm. Biomed. Anal. 15 (1997) 1271–1279. [15] W.T. Lee, Disorders of amino acid metabolism associated with epilepsy, Brain Dev. 33 (2011) 745–752. [16] K.E. Tiedje, K. Stevens, S. Barnes, D.F. Weaver, β-Alanine as a small molecule neurotransmitter, Neurochem. Int. 57 (2010) 177–188. [17] D.K. Layman, The role of leucine in weight loss diets and glucose homeostasis, J. Nutr. 133 (2003) 261S–267S. [18] S. Vemulapalli, M. Barletta, The role of the sympathetic nervous system in the cardiovascular effects of systemically administered gamma-aminobutyric acid, Arch. Int. Pharmacodyn. Ther. 267 (1984) 46–58. [19] B.J. Shelp, A.W. Bown, M.D. McLean, Metabolism and functions of gamma-aminobutyric acid, Trends Plant Sci. 4 (1999) 446–452. [20] N.V. Satya, P.M. Nair, Metabolism enzymology and possible roles of 4-aminobutyrate in higher plants, Phytochemistry 29 (1990) 367–375. [21] A Peter, L Lazar, F Fulop, D.W. Armstrong, High-performance liquid chromatographic enantioseparation of β-amino acids, J. Chromatogr. A 926 (2001) 229–238. [22] V. Rossetti, A. Lombard, Determination of glutamate decarboxylase by high-performance liquid chromatography, J. Chromatogr. B 681 (1996) 63–67. [23] K.Y. Syu, C.L. Lin, H.C. Huang, J.K. Lin, Determination of theanine, GABA, and other amino acids in green, oolong, black, and Pu-erh teas with dabsylation and high-performance liquid chromatography, J.Agric. Food Chem. 56 (2008) 7637–7643. [24] H.F. Wang, Y.S. Tsai, M.L. Lin, A.S. Ou, Comparison of bioactive components in GABA tea and green tea produced in Taiwan, Food Chem. 96 (2006) 648–653. [25] M.M. Hsieh, S.M. Chen, Determination of amino acids in tea leaves and beverages using capillary electrophoresis with light-emitting diode-induced fluorescence detection, Talanta 73 (2007) 326–331. [26] Y.H. Dou, N. Bao, J.J. Xu, H.Y. Chen, A dynamically modified microfluidic poly(dimethylsiloxane) chip with electrochemical detection for biological analysis, Electrophoresis 23 (2002) 3558–3566. [27] G.L. Luque, N.F. Ferreyra, G.A. Rivas, Electrochemical sensor for amino acids and albumin based on composites containing carbon nanotubes and copper microparticles, Talanta 71 (2007) 1282–1287. [28] A.J. Wang, J.J. Xu, H.Y. Chen, Nonionic surfactant dynamic coating of poly(dimethylsiloxane) channel surface for microchip electrophoresis of amino acids, Anal. Chim. Acta 569 (2006) 188–194. [29] A.J. Wang, J.J. Feng, J. Fan, Covalent modified hydrophilic polymer brushes onto poly(dimethylsiloxane) microchannel surface for electrophoresis separation of amino acids, J. Chromatogr. A 1192(2008) 173–179. [30] F.G. Bănică, D. Guziejewski, S. Skrzypek, W. Ciesielski, D.Kazmierczak, Effect of basic amino acids on nickel ion reduction at a mercury electrode, Electroanalysis 21 (2009) 1711 –1718. [31] S. Kiyohito, J.Y. Jin, T. Takeuchi, T. Miwa, Y. Takekoshi, S. Kanno, S. Kawase, Nickel–titanium alloy electrodes for stable amperometric detection of underivatized amino acids in anion-exchange chromatography, Talanta 53 (2001) 1037–1044. [32] J.J. Xu, Y. Peng, N. Bao, X.H. Xia, H.Y. Chen, Simple method for the separation and detection of native amino acids and the identification of electroactive and non-electroactive analytes, J. Chromatogr. A 1095(2005) 193–196. [33] C.D. Garcia, C.S. Henry, Direct determination of carbohydrates, amino acids, and antibiotics by microchip electrophoresis with pulsed amperometric detection, Anal. Chem. 75 (2003) 4778–4783. [34] J. Wang, M.P. Chatrathi, A. Ibanez, A. Escarpab, Micromachined separation chips with post-column enzymatic reactions of 'class' enzymes and end-column electrochemical detection: assays of amino acids, Electroanalysis 14 (2002) 400–404. [35] H. Heli, M. Hajjizadeh, A. Jabbari, A.A. Moosavi-Movahedi, Fine steps of electrocatalytic oxidation and sensitive detection of some amino acids on copper nanoparticles, Anal. Biochem. 388 (2009) 81–90. [36] Y. Xie, C.O. Huber, Electrocatalysis and amperometric detection using an electrode made of copper oxide and carbon paste, Anal. Chem. 63 (1991) 1714–1719. [37] J. Ye, R.P. Baldwin, Determination of carbohydrates, sugar acids and alditols by capillary electrophoresis and electrochemical detection at a copper electrode, J. Chromatogr. A 687 (1994) 141–148. [38] A.S. Arribas, E. Bermejo, M. Chicharro, A. Zapardiel, G.L. Luque, N.F. Ferreyra, G.A. Rivas, Analytical applications of a carbon nanotubes composite modified with copper microparticles as detector in flow systems, Anal. Chim. Acta 577 (2006) 183–189. [39] K. Štulik, V. Pacakova, M. Weingart, M. Podolak, Operation parameters of voltammetric high-performance liquid chromatographic detectors with copper electrodes and application to a determination of some fodder biofactors, J. Chromatogr. A 367 (1996) 311–321. [40] J.M. Zadeii, J. Marioli, T. Kuwana, Electrochemical detector for liquid chromatographic determination of carbohydrates, Anal. Chem. 63(1991) 649–653. [41] J.M. Zen, Y.S. Song, H.H. Chung, C.T. Hsu, A. Senthil Kumar, Photoelectrochemical oxygen sensor using copper-plated screen-printed carbon electrodes, Anal. Chem. 74 (2002) 6126–6130. [42] M.J. Siegfried, K.S. Choi, Directing the architecture of cuprous oxide crystals during electrochemical growth, Angew. Chem. 117 (2005)3282–3287. [43] M.J. Siegfried, K.S. Choi, Elucidating the effect of additives on the growth and stability of Cu2O surfaces via shape transformation of pre-grown crystals, J. Am. Chem. Soc. 128 (2006) 10356–10357. [44] Z. Wu, M. Shao, W. Zhang, Y. Ni, Large-scale synthesis of uniform Cu2O stellar crystals via microwave-assisted route, J. Cryst. Growth 260 (2004) 490–493. [45] P. He, X. Shen, H. Gao, Size-controlled preparation of Cu2O octahedron nanocrystals and studies on their optical absorption, J. Colloid Interface Sci. 284 (2005) 510–515. [46] R. Abdullah, P. Debabrata, S. Youngku, K.T. Leung, Nanoscale shape and size control of cubic, cuboctahedral, and octahedral Cu-Cu2O coreshell nanoparticles on Si(100) by one-step, templateless, capping-agent-free electrodeposition, ACS Nano 4 (2010) 1553–1560. [47] Y. Cao, Y.J. Wang, K.G. Zhou, Z. BI, Morphology control of ultrafine cuprous oxide powder and its growth mechanism, Trans. Nonferrous Met. Soc. China 20 (2010) s216– s220. [48] A. Survila, A. Survilienė, S. Kanapeckaitė, J. Būdienė, P. Kalinauskas,G. Stalnionis, A. Sudavičius, Oxide layers developed on copper electrodes in Cu(II) solutions containing ligands, J. Electroanal. Chem. 582 (2005) 221–229. [49] E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, J. Electroanal. Chem. 101 (1979) 19–28. [50] X. Zhao, R.G. Zhao, W.S. Yang, Adsorption of alanine on Cu (001)studied by scanning tunneling microscopy, Surf. Sci. 442 (1999)L995–L1000. [51] C. Egawa, H. Iwai, M. Kabutoya, S. Oki, STM study of DL-alanine array structure on Cu (001), Surf. Sci. 532–535 (2003) 233–236. [52] O. Akhavan, R. Azimirad, S. Safa, E. Hasani, CuO/Cu(OH)2 hierarchical nanostructures as bactericidal photocatalysts, J. Mater.Chem. 21 (2011) 9634–9640. [53] M.Y. Lee, J. Peng, C.C. Wu, Geometric effect of copper nanoparticles electrodeposited on screen-printed carbon electrodes on the detection of α-, β- and γ-amino acids, Sens. Actuators, B 186 (2013) 270–277. [54] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gate, Y. Yin, F. Kim, H. Yan, One-dimensional nanostructures: synthesis, characterization, and applications, Adv. Mater. 15 (2003) 353–389. [55] D.J. Norris, Y.A. Vlasov, Chemical approaches to three-dimensional semiconductor photonic crystals, Adv. Mater. 13 (2001) 371–376. [56] X.J. Zhang, G.F. Wang, X.W. Liu, J.J. Wu, M. Li, J. Gu, H. Liu, B. Fang, Different CuO nanostructures: synthesis, characterization, and applications for glucose sensor, J. Phys. Chem. 112 (2008) 16845–16849. [57] M. Bicer, İ.Şişman, Controlled synthesis of copper nano/microstructures using ascorbic acid in aqueous CTAB solution, Powder Technol. 198 (2010) 279–284. [58] X. Wang, C. Hu, H. Liu, G. Du, X. He, Y. Xi, Synthesis of CuO nanostructures and their application for nonenzymatic glucose sensing, Sens. Actuators, B 144 (2010) 220–225. [59] D. Chen, G. Shen, K. Tang, Y. Qian, Large-scale synthesis of CuO shuttle-like crystals via a convenient hydrothermal decomposition route, J. Cryst. Growth 254 (2003) 225–228. [60] Y. Min, T. Wanga, Y.C. Chen, Microwave-assistant synthesis of ordered CuO micro-structures on Cu substrate, Appl. Surf. Sci. 257(2010) 132–137. [61] W.W. Wang, Y.J. Zhu, G.F. Cheng, Y.H. Huang, Microwave-assisted synthesis of cupric oxide nanosheets and nanowhiskers, Mater. Lett.60 (2006) 609–612. [62] F. Teng, W. Yao, Y. Zheng, Y. Ma, Y. Teng, T. Xu, S. Liang, Y. Zhu, Synthesis of flower-like CuO nanostructures as a sensitive sensor for catalysis, Sens. Actuators, B 134 (2008) 761–768. [63] W.Z. Le, Y.Q. Liu, Preparation of nano-copper oxide modified glassy carbon electrode by a novel film plating/potential cycling method and its characterization, Sens. Actuators, B 141 (2009) 147–153. [64] D.D. La, T.A. Nguyen, S. Lee, J.W. Kimc, Y.S. Kima, A stable superhydrophobic and superoleophilic Cu mesh based on copper hydroxide nanoneedle arrays, Appl. Surf. Sci. 257 (2011) 5705–5710. [65] D.J. Chen, Y.H. Lu, A.J. Wang, J.J. Feng, T.T. Huo, W.J. Dong, Facile synthesis of ultra-long Cu microdendrites for the electrochemical detection of glucose, J Solid State Electrochem 16(2012) 1313–1321. [66] T. Du, D. Tamboli, V. Desai, S. Seal, Mechanism of copper removal during CMP in acidic H2O2 slurry, J. Electrochem. Soc. 151 (2004)230–235. [67] J.C.B. Fernandes, L. Rover Jr., L.T. Kubota, G. de Oliveira Neto,Potentiometric determination of L-ascorbic acid in pharmaceutical samples by FIA using a modified tubular electrode, J. Braz. Chem. Soc., 11 (2000) 182–186. [68] Y. Lu, J.A. Roe, C.J. Bender, J. Peisach, L. Banci, I. Bertini, E.B. Gralla, J.S. Valentine, New type 2 copper−cysteinate proteins. copper site histidine-to-cysteine mutants of yeast copper−zinc superoxide dismutase, Inorg. Chem. 35 (1996) 1692–1700. [69] K.B. Male, S. Hrapovic, Y. Liu, D. Wang, J.H.T. Luonga, Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes, Anal. Chim. Acta 516 (2004) 35–41. [70] D. Fullston, D. Fornasiero, J. Ralston. Zeta potential study of the oxidation of copper sulfide minerals. Colloids Surf., A: Physicochem. Eng. Aspects 146 (1999) 113–121. [71] F.S. Xiao, J. Sun, X. Meng, R. Yu, H. Yuan, D. Jiang, S. Qiu, R. Xu, A novel catalyst of copper hydroxyphosphate with high activity in wet oxidation of aromatics, Appl. Catal., A: General 207 (2001) 267–271. [72] X.J. Meng, F.S. Xiao, Novel copper phosphates with high catalytic activities under mild conditions, Acta Phys. –Chim. Sin. 20 (2004) 939–945. [73] M.F.S. Teixeira, L.A. Ramos, O. Fatibello-Filho, E.T.G. Cavalheiro, Carbon paste electrode modified with copper(II) phosphate immobilized in a polyester resin for voltammetric determination of L-ascorbic acid in pharmaceutical formulations, Anal Bioanal Chem. 376 (2003) 214–219. [74] K.H.G. Freitas, O. Fatibello-Filho, Carbon composite electrode modified with copper(II) phosphate immobilized in a polyester resin for voltammetric determination of catechin in teas, Anal. Lett. 43(2010) 2091–2104. [75] X. Wu, G. Shi, S. Wang, P. Wu, Formation of 3D dandelions and 2D nanowalls of copper phosphate dihydrate on a copper surface and their conversion into a nanoporous CuO film, Eur. J. Inorg. Chem. 2005 (2005) 4775–4779. [76] X. Wu, G. Shi, Fabrication of a lotus-like micro–nanoscale binary structured surface and wettability modulation from superhydrophilic to superhydrophobic, Nanotechnology 16 (2005) 2056–2060. [77] D.W. Shoesmith, T.E. Rummery, D. Owen, W. Lee, Anodic oxidation of copper in alkaline solutions I. nucleation and growth of cupric hydroxide films, J. Electrochem. Soc. 123 (1976) 790–799. [78] O. Yavuza, Y. Altunkaynakb, F. Guzelc, Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite, Water Research 37 (2003) 948–952. [79] K.J. Powell, P.L. Brown, R.H. Byrne, T. Gajda, G. Hefter, S. Sjoberg, H. Wanner, Chemical speciation of environmentally significant metals with inorganic ligands Part 2: The Cu2+–OH–, Cl–, CO32–, SO42–, and PO43– systems, Pure Appl. Chem. 79 (2007) 895–950. [80] L.P. Podgornova, Yu.I. Kuznetsov, S.V. Gavrilova, On the zinc and copper dissolution in phosphate solutions, Protection of Metals 39 (2003) 217–221. [81] J.M. Zen, H.H. Chung, A.S. Kumar, Selective Detection of o-Diphenols on Copper-Plated Screen-Printed Electrodes, Anal. Chem. 74 (2002) 1202–1206. [82] S.J. Yuan, S.O. Pehkonen, Surface characterization and corrosion behavior of 70/30 Cu–Ni alloy in pristine and sulfide-containing simulated seawater, Corros. Sci. 49 (2007) 1276–1304. [83] J. Hernandez, P. Wrschka, G.S. Oehrlein, Surface chemistry studies of copper chemical mechanical planarization, J. Electrochem. Soc. 148 (2001) 389–397. [84] L. Yohai, W.H. Schreiner, M. Vazquez, M.B. Valcarce, Phosphate ions as inhibiting agents for copper corrosion in chlorinated tap water, Mater. Chem. Phys. 139 (2013) 817–824. [85] C. Zhu, A. Osherov, M.J. Panzer, Surface chemistry of electrodeposited Cu2O films studied by XPS, Electrochim. Acta 111 (2013) 771–778. [86] Y. Feng, W.K. Teo, K.S. Siow, K.L. Tan, A.K. Hsieh, The corrosion behaviour of copper in neutral tap water. part I: corrosion mechanisms, Corros. Sci. 38 (1996) 369–385. [87] X. Wu, H. Bai, J. Zhang, F. Chen, G. Shi, Copper hydroxide nanoneedle and nanotube arrays fabricated by anodization of copper, J.Phys. Chem. B 109 (2005) 22836–22842. [88] T. Hanawa, M. Ota. Characterization of surface film formed on titanium in electrolyte using XPS. Applied Surf. Sci 55 (1992) 269–276. [89] E. Laviron, L. Roullier, C. Degrand, A multilayer model for the study of space distributed redox modified electrodes: Part II. Theory and application of linear potential sweep voltammetry for a simple reaction, J. Electroanal. Chem. 112 (1980) 11–23. [90] W.B. Makinen, A.F. Pearlmutter, J.E. Stuehrl, Copper (Ⅱ) chelation kinetics. α-alanine, β-alanine, and histidine, J. Am. Chem. Soc. 91(1969) 4083–4088. [91] J.W. Brubaker, A.F. Pearlmutter, J.E. Stuehr, T.V. Vu, Copper (II) chelation kinetics. III. Steric effects, Inorg. Chem. 13 (1974) 559–563. [92] Y. Zhao, Y. Gao, D. Zhan, H. Liu, O. Zhao, Y. Kou, Y. Shao, M. Li, Q. Zhuang, Z. Zhu, Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquidgel modified electrode, Talanta 66 (2005) 51–57. [93] J. Dupont, P.A.Z. Suarez, R.F. de Souza, Ionic liquid (molten salt) phase organometallic catalysis, Chem. Rev. 102 (2002) 3667–3692. [94] K.E. Gutowski, G.A. Broker, H.D. Willauer, J.G. Huddleston, R.P. Swatloski, J.D. Holbrey, R.D. Rogers, Controlling the aqueous miscibility of ionic liquids: aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations, J. Am. Chem. Soc. 125 (2003) 6632– 6633. [95]J.S.Wilkes,J.A.Levisky,R.A.Wilson,melts:C.L.newHussey,classofDialkylimidazoliumchloroaluminateroom-temperature ionic liquids for electrochemistry, spectroscopy andsynthesis, Inorg. Chem. 21 (1982) 1263–1264. [96] J.S. Wilkes, A short history of ionic liquids—from molten salts to neoteric solvents, Green Chem. 4 (2002) 73–80. [97] C.L. Hussey, Room temperature haloaluminate ionic liquids. Novel solvents for transition metal solution chemistry, Pure Appl. Chem. 60(1988) 1763–1772. [98] H. Xue, R. Verma, J.M. Shreeve, Review of ionic liquids with fluorine-containing anions, J. Fluorine Chem. 127 (2006) 159–176. [99] M.C. Buzzeo, C. Hardace, R.G. Compton, Use of room temperature ionic liquids in gas sensor design, Anal. Chem. 76 (2004) 4583–4588. [100] Z. Li, H. Liu, Y. Liu, P. He, H. Li, J.H. Li, Electrochemical deposition of silver in room-temperature ionic liquids and its surface-enhanced Raman scattering effect, Langmuir 20 (2004)10260–10267. [101] P. He, H. Liu, Z. Li, J.H. Li, J. Electrodeposition of platinum in room-temperature ionic liquids and electrocatalytic effect on electro-oxidation of methanol, Electrochem. Soc. 152 (2005) E146–E153. [102] W. Sun, M. Yang, K. Jiao, Electrocatalytic oxidation of dopamine at an ionic liquid modified carbon paste electrode and its analytical application, Anal. Bioanal. Chem. 389 (2007) 1283–1291. [103] Q. Wang, Y.B. Yun, J.B. Zheng, Nonenzymatic hydrogen peroxide sensor based on a polyaniline-single walled carbon nanotubes composite in a room temperature ionic liquid. Microchim Acta 167(2009) 153–157. [104] C.M. Li, J.F. Zang, D.P. Zhan, W. Chen, C.Q. Sun, A.L. Teo, Y.T. Chua, V.S. Lee, S.M. Moochhala, Electrochemical detection of nitric oxide on a SWCNT/RTIL composite gel microelectrode, Electroanal.18 (2006) 713–718. Q.P. [105] Yan, F.Q. Zhao, G.Z. Li, B.Z. Zeng, Voltammetric determination of uric acid with a glassy carbon electrode coated by paste of multiwalled carbon nanotubes and ionic liquid, Electroanal. 18 (2006)1075–1080. [106] F. Zhao, X. Wu, M. Wang, Y. Liu, L. Gao, S.J. Dong, Electrochemical and bioelectrochemistry properties of room-temperature ionic liquids and carbon composite materials, Anal.Chem. 76 (2004) 4960–4967. [107] X. Lu, J. Hu, X. Yao, Z.Wang, J. Li, Composite system based on chitosan and room-temperature ionic liquid:  direct electrochemistry and electrocatalysis of hemoglobin, Biomacromolecules 7 (2006) 975–980. [108] Y. Zhang, J. Zheng, Direct electrochemistry and electrocatalysis of myoglobin immobilized in hyaluronic acid and room temperature ionic liquids composite film, Electrochem. Commun. 10 (2008)1400–1403.
摘要: Abstract This dissertation elucidates the fabrication of copper-nanostructured electrodes by electrodepositing techniques and their applications in thedetection of amino acids (AAs). The topics include: (1) geometric effect ofcopper nanoparticles (CuNPs) electrodeposited on screen-printed carbonelectrodes (SPEs) on the detection of α-, β- and γ-amino acids (AAs); (2) fabrication of nanostructured copper phosphate (Cu3(PO4)2) electrodes forthe detection of α-amino acids; (3) effect of ionic liquid (IL) on thedetection of AAs measured at the nanostructured-Cu3(PO4)2 electrodes in aweak alkaline solution. The contents of each chapter are listed below: Part 1: Geometric effect of copper nanoparticles electrodeposited on screen-printed carbon electrodes on the detection of α-, β- and γ-amino acids Disposable copper nanoparticle electrodeposited screen-printed carbon electrodes (CuNPs/SPEs) capable of detecting α-, β- and γ-amino acids(AAs) are developed by a process which alternates reductive deposition and oxidative treatment over six cycles (called the RO6 method). Compared with other electrodepositing methods, the 87% ratio of RO6 method-depositing CuNPs is cubic in shape with an average edge length of 353 nm, and features a relatively higher CuI2O(200) to CuIO face ratio of 0.17. The particular geometric characteristics of RO6-CuNPs/SPEs permit varied AA ligands to form complexes with CuI and CuII at around 0.0 V and +0.2 V, respectively. Moreover, the oxidative current induced by the CuII-AA ligand complex is larger than that induced by the CuI-AA ligand complex. Furthermore, α-AAs exhibit the faster complexation rate than β-alanine and γ-aminobutyric acid, resulting in a larger current response. The RO6-CuNPs/SPEs integrated with a flow injection analysis system exhibits high reproducibility with a relative standard deviation of 2.68%,and good linearity (correlation coefficient > 0.995) in the range of 5–1000μM. The RO6-CuNPs/SPEs promise excellent potential for the integration of separation system to provide sensitive analysis of α-, β- and γ-AAs in clinic diagnostic and food industry applications. Part 2: Fabrication of nanostructured copper phosphate electrodes for the detection of α-amino acids Cu3(PO4)2-deposited electrodes capable of detecting nonelectroactive α-amino acids (AAs) are developed by the dissolution-precipitation method. The Cu3(PO4)2-dominated compounds of flake-shape nanostructures can bequickly and uniformly deposited on the surface of acicula-nanostructured Cu(OH)2-electrodeposited electrodes in a 100 mM Na2HPO4 solution (pH5.0) within 2 h. Analysis of X-ray photoelectron spectroscopy andelectrochemical kinetics showsan oxidative reaction at +0.11 V can increase the ratio of H2PO41- on the electrode surface andproduce theCuII(H2PO4)2 complex. Moreover, the CuII compounds and the AAs can form complexes to accompany the chemical oxidation of AAs and the formation of the CuI complex, increasing the amount of oxidative current detected via the chemical-electrochemical mechanism. The amperometric response presented good linearity and sensitivity in the range of 143–600μM for electroactive and nonelectroactive α-AAs. The Cu3(PO4)2-deposited electrode can act as a promising AA sensor for applications in the biomedical diagnostics and food industries. Part 3: Ionic liquid-modified copper phosphate electrodes for the detection of α-amino acids in weakly alkaline solution The N-propyl-3-methylpyridinium bis(trifluoromethanesulfonyl) imide (PMP-TFSI) IL-modifed Cu3(PO4)2-deposited electrodes are used to detect electroactive and nonelectroactive α-AAs in a weakly alkaline solution. The SEM images show that the PMP-TFSI IL can cover the entire surface of Cu3(PO4)2-deposited electrodes. The electrodes displayed an obvious oxidative peak at +0.11 V in a 20 mM Na2HPO4 solution (pH 7.4). Moreover, the result of electrochemical kinetics showed that two-electron tansfer occurred, resulting from the formation of CuIIHPO4 complex due to the oxidation of HPO42- on the electrode surface. The amperometric response presented good linearity and sensitivity in the range of 90.9–500.0μM for electroactive and nonelectroactive α-AAs.The IL/Cu3(PO4)2-deposited electrodes improve the drawback of previous Cu3(PO4)2 electrodes to promise the AA meassurement in alkaline solutions and lower the LOD.
本研究是利用電化學沉積技術製作不同的奈米結構銅電極,並探討該電極對胺基酸(amino acids, AAs)檢測的影響 其研究主題包括三部分:(1)沉積立方形之銅奈米粒子(copper nanoparticles,CuNPs)於網版印刷碳電極(screen-printed carbon electrodes, SPEs)上,以應用於α-、β-與γ-AAs之量測;(2)沉積奈米結構化(nanostructured, NS)磷酸銅(copperphosphate,Cu3(PO4)2)之銅電極製作與對α-AAs之量測;(3)離子液體(ionic liquid, IL)修飾之Cu3(PO4)2-NS電極在弱鹼性溶液中對AAs檢測特性的影響。本論文之各部分內容敘述如下: Part 1: 沉積於SPCE上的立方形CuNPs對α-、β-與γ-胺基酸量測 發展一種可拋棄式之沉積CuNPs的SPEs,藉由六次交替還原沉積與氧化處理(reductive deposition and oxidative treatment, RO)程序(簡稱RO6)所得之CuNPs,對α-、β-與γ-AAs具有最佳氧化檢測效果。比較其他電沉積之方式,RO6沈積之CuNPs有87%是立方體形狀,其平均邊長為353 nm,並具有較高比例之氧化亞銅(200)晶格上。此立方形CuNPs允許其Cu(I)、Cu(II)與α-、β-與γ-AAs配體形成複合物,使之在0 V與0.2V (vs. Ag/AgCl)時,產生氧化反應。且Cu(II)與AAs之複合速率比Cu(I)的速度快,能產生更大的氧化電流。此外,該電極對α-AAs比β-與γ-AAs具有較快的複合速率,而導致有較大氧化電流。結合流動式注入系統之量測,具 有相當高之重複 性,其相對標準 偏差(relative standarddeviation, RSD)為2.68%,在5 μM-1000 μM中具有良好之線性度(相關係數>0.995)。此RO6沈積之CuNPs的SPEs具有不錯的潛能可與其他分離系統結合,以專一性檢測α-、β-與γ-AAs。 Part 2: 奈米結構磷酸銅電極之製作與對α-AA之量測 發展一種NS化之Cu3(PO4)2電極,在酸性磷酸鹽溶液中藉由將氫氧化銅(Cu(OH)2)溶解沉降生成Cu3(PO4)2,使其能在弱酸性溶液中量測非電活性之α-AAs。首先以電沉積方式快速、均一的沉積出尖刺狀氫氧化銅NS,再將該氫氧化銅電極浸泡在100 mM的Na2HPO4溶液(pH 5.0)中,經2 h後可生成薄片狀的Cu3(PO4)2電極。由X-ray光電子能譜(X-rayphotoelectron spectroscopy, XPS)分析與電化學動力學顯示,在+0.11 V(vs. Ag/AgCl)時會有一氧化反應,能增加H2PO4-1的比率,使其與銅電極產生Cu(II)(H2PO4)2的複合物。此Cu(II)能和AAs形成複合物,經由化學-電化學(CE)機制,將AAs先進行化學氧化後,Cu(II)還原產生Cu(I),從而增加檢測之氧化電流。以安培法對電活性與非電活性之α-AAs量測,在 143 μM-600 μM 中 具 有 良 好 之 線 性 度 , 該 結 果 顯 示 此 NS 化 之Cu3(PO4)2電極能作為胺基酸之感測器。 Part 3: 離子液體修飾之Cu3(PO4)2-NS電極在弱鹼性溶液中對AAs檢測特性的影響 本 研 究 探 討 出 修 飾 N-propyl-3-methylpyridinium bis (trifluoromethanesulfonyl) imide (PMP-TFSI) IL之Cu3(PO4)2-NS電極,使其能夠在弱鹼性溶液中量測電活性與非電活性之α-AAs。藉由電子顯微鏡(SEM)發現,此IL能均勻覆蓋在Cu3(PO4)2-NS電極表面。在20 mMNa2HPO4(pH 7.4)中於+0.11 V (vs. Ag/AgCl)時會有一明顯氧化反應,由電化學動力學顯示,此PMP-TFSI修飾之Cu3(PO4)2-NS電極具有2個電子轉移 推論此為Cu(II)(HPO4)複合物的氧化生成 以安培法對16種α-AAs,。進行量測,發現在90.9 μM-500.0 μM中具有良好之線性度與靈敏度。此IL修飾之Cu3(PO4)2-NS電極可改善原先Cu3(PO4)2-NS電極無法於弱鹼性溶液中量測的缺點,並可降低LOD值。
URI: http://hdl.handle.net/11455/91074
其他識別: U0005-2810201410014900
文章公開時間: 10000-01-01
Appears in Collections:電機工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.