Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91129
標題: 無座式電動獨輪車之系統設計與控制
System Design and Control of an Electric Seatless Unicycle
作者: 葉鴻成
Hong-Seng Yap
關鍵字: Seatless Electric Unicyle
Fuzzy Basis Function Networks (FBFN)
Interval Type 2 Fuzzy Neural Networks (IT2FNN)
State Feedback Control
無座式電動獨輪車
模糊基底類神經網路
區間第二型模糊類神經網路
狀態回授控制
引用: [1] Z. Sheng, and , K. Yamafuji, 'Postural stability of a human riding a unicycle and its emulation by a Robot,' IEEE Transactions Robotics and Automation, vol.13 no.5, pp.709-720, Oct.1997 [2] H. B. Brown, Jr, and Y. Xu, 'A single-wheel, gyroscopically stabilized robot,' IEEE Robotics & Automation Magazine, vol.4, no.3, pp.39-44, Sep.1997. [3] K. Pathak, and S. K. Agrawal, 'An integrated path-planning and control approach for nonholonomic unicycles using switched local potentials,' IEEE Transactions Robotics and Automation, vol.21 no.6, pp.1201–1208, Dec.2005. [4] S. Cedervall, Hu Xiaoming, 'Nonlinear Observers for Unicycle Robots with Range Sensors,' IEEE Transactions Automatic Control, vol.52, no.7, pp.1325 – 1329, July 2007. [5] Y. Xu, and K.W. Au., 'Stabilization and path following of a single wheel robot,' IEEE Transactions Automatic Control, Mechatronics, vol. 9, no.2, pp.407 – 419, June 2004. [6] Y. Ou and Y. Xu, 'Balance control of a single wheel robot,' in Proc. IEEE/RSJ International Conference, IEEE Intelligent Robots and System, vol.2, pp.2043 –2048, 30 Sept.-5 Oct. 2002. [7] A. Alasty, and H. Pendar, 'Equations of Motion of a Single-Wheel Robot in a Rough Terrain,' in Proc.IEEE International Conference, Robotics and Automation. pp.879 – 884, 18-22 April 2005. [8] S. Majima, T. Kasai, and T. Kadohara, 'A Design of a Control Method for Changing Yaw Direction of an Underacuatted Unicycle Robot,' in Proc. TENCON 2006 IEEE Region 10 Conference, pp.1 – 4, Nov. 2006 [9] Z. Jin, and G. Zhang, 'the nonholonomic motion planning and control of the unicycle mobile robot,' in intelligent control and automation, 2006. WCICA 2006. vol.1, pp.3461 – 3465, 2006 [10] M. Aicardi, G. Casalino, A. Bicchi, and A. Balestrino, 'Closed loop steering of unicycle like vehicles via Lyapunov techniques,' IEEE Robotics & Automation Magazine, vol.2, no.1, pp.27 – 35, March 1995 [11] V. D. Colli, G. Tomassi, and M. Scarano, 'Single Wheel' longitudinal traction control for electric vehicles,' IEEE Trans. Power Electronics, vol.21, no.3, pp.799 – 808, May 2006. [12] Ricky Gervais 'The Electric Unicycle Riding (a unicycle is the most useless thing you can do,)' [Online], 2007. Available: http://tlb.org/eunicycle.html [13] Focus Designs Inc. http://focusdesigns.com/ [14] http://enicycle.com/ [15] C. H. Lu, Intelligent Adaptive Motion Control of an Electric Unicycle, MS Thesis, Department of Electrical Engineering, National Chung Hsing University, July 2011. [16] Honda UX-3, http://www.honda.co.jp/news/2009/c090924.html. [On-line], 2009.Available [17] Solowheel, http://solowheel.com/. [Online], 2013. Available: [18] IPS113, http://www.iamips.com/. [Online], 2013. Available: [19] S. C. Lin, System Design, Modeling and Control of Self-Balancing Human Transportation Vehicles, Ph. D dissertation, Department of Electrical Engineering, National Chung Hsing University, Taichung, Taiwan, ROC, July 2008. [20] H. C. Shin, System Design and Control of an Electric Unicycle, M.S. Thesis, Department of Electrical Engineering, National Chung Hsing University, Taichung, Taiwan, ROC, July 2009. [21] C. C. Tsai, S. C. Shih, and S. C. Lin 'Adaptive Nonlinear Control Using RBFNN for an Electric Unicycle,' Proceedings of the 2008 IEEE International conference on System, Man and Cybernetics, Singapore, October 12-15, 2008. [22] S. C. Lin, C. C. Tsai, X. Q Shih, and C. H. Lu 'Linearized two-loop posture and speed control of an electric unicycle,' Proceedings of the 2010 ICSSE International conference on System Science and Engineering, Singapore, July 1-3, 2010. [23] Z. Sheng, and K. Yamafuji, 'Postural stability of a human riding a unicycle and its emulation by a Robot,' IEEE Transactions on Robotics and Automation, vol.13 no.5, pp.709-720, Oct. 1997. [24] K. Hofer, 'Observer-based drive-control for self-balanced vehicles' the 32nd IEEE Annual Conference on Industrial Electronics, IECON 2006, pp. 3951 – 3956, 6-10 Nov. 2006. [25] R. Nakajima, T. Tsubouchi, S.Yuta, E. Koyanagi, 'A development of a new mechanism of an autonomous unicycle,' Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robots and Systems ( IROS '97), vol. 2, pp. 906 – 912, 7-11 Sept. 1997. [26] Y. Ou and Y. Xu, 'Balance control of a single wheel robot,' in Proc. IEEE/RSJ International Conference on Intelligent Robots and System, vol.2, pp.2043-2048, 30 Sept.-5 Oct. 2002. [27] J. C. Lo and Y. H. Kuo, 'Decoupled Fuzzy Sliding-Mode Control,' IEEE Transactions on fuzzy systems, vol. 6, no. 3, pp. 426-435, August 1998. [28] C. M. Lin and Y. J. Mon, 'Decoupling Control by Hierarchical Fuzzy Sliding-Mode Controller,' IEEE Transactions on control systems technology, vol. 13, no. 4, pp. 593-598 , July 2005. [29] T. B. Lauwers, G. A. Kantor, and R. L. Hollis, 'A dynamically stable single-wheeled mobile robot with inverse mouse-ball drive,' Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, USA, pp. 2884-2889, 2006. [30] D. Caldecott, A. Edwards, M. Haynes, M. Jerbic, A. Kadis, R. Madigan, Z. Prime and B. Cazzolato, 'Modelling, simulation and control of an electric unicycle,' in Proc. Australasian Conference on Robotics and Automation, Brisbane, Australia, 1-3 Dec. 2010. [31] K. Hofer, 'Electric vehicle on one wheel,' in Proc. 2005 IEEE International Conference on vehicle power and propulsion, pp. 517-521, 7-9 Sept. 2005. [32] C. N. Huang, 'The development of self-balancing controller for one-wheeled vehicles,' Engineering, vol. 12, no.4, pp.212-219, April 2010. [33] C. C. Tsai, C. K. Chan, S. C. Shih and S. C. Lin, 'Adaptive nonlinear control using RBFNN for an electric unicycle,' in Proc. IEEE International Conference on Systems, Man, and Cybernetics, Singapore, pp.2343-2348, Oct. 12-15, 2008. [34] H. K. Khalil, Nonlinear systems, 2nd ed., Prentice Hall, 1995. [35] C. W. Liao, C. C. Tsai, 'Adaptive hierarchical decoupling sliding-mode control of a electric unicycle,' in Proc. of 2009 International conference on Service and Interactive Robots, Taipei, Taiwan, 7-9 Aug. 2009. [36] W. Wang, X. D. Liu, J. Q. Yi. 'Structure design of two types of sliding-mode controllers for a class of under-actuated mechanical systems,' IET Control Theory and Applications, vol. 1, no 1, pp. 163-172, 2007. [37] J. C. Lo and Y. H. Kuo, 'Decoupled Fuzzy Sliding-Mode Control,' IEEE Transactions on fuzzy systems, vol. 6, no. 3, pp. 426-435, August 1998. [38] C. M. Lin and Y. J. Mon, 'Decoupling Control by Hierarchical Fuzzy Sliding-Mode Controller,' IEEE Transactions on control systems technology, vol. 13, no. 4, pp. 593-598 , July 2005. [39] C. K. Lin, S. D.Wang, 'Robust self-tuning rotated fuzzy basis function controller for robot arms.' Control Theory and Applications, IEE Proceedings, vol.144, no.4, pp.293-298, July 1997. [40] Z. Huaguang, L. Cai, B. Zeungnam , 'A fuzzy basis function vector-based multivariable adaptive controller for nonlinear systems.' IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 30 no.1, pp.210-217, Feb. 2000. [41] C.K. Lin, 'Adaptive critic autopilot design of Bank-to-turn missiles using fuzzy basis function networks,' IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 35 no.2, pp.197-207, April 2005. [42] C. C. Tsai, H. C. Huang, S. C. Lin,' Adaptive Neural Network Control of a Self-balancing Two-wheeled Scooter,' IEEE Transactions on Industrial Electronics, vol. 57, no. 4, April 2010. [43] C.C. Tsai and C.H. Lu, 'Intelligent Adaptive Backstepping Motion Control of an Electric Unicycle Using Fuzzy Basis Function Networks,' in Proceedings of 2011 National Symposium on System science and engineering, Puli, Nanto, Taiwan, June 17-18, 2011. [44] Q. Liang and J. M. Mendel, 'Interval type-2 logic systems: theory and design,' IEEE Trans. Fuzzy Syst., vol. 8, pp.535-550, 2000. [45] N. Karnik, J. M. Mendel and Q. Liang, 'Type-2 Fuzzy Logic Systems', IEEE Transaction Fuzzy Systems, vol. 7, no. 6, pp. 643-658, 1999. [46] C. H. Lee, Y. C. Lin, and W. Y. Lai, 'Systems identification using type-2fuzzy neural network (type-2 FNN) systems,' in Proc. IEEE Int. Symp.Comput. Intell. Robot. Autom., vol. 3, pp. 1264–1269, 2003. [47] J. M. Mendel, 'Computing derivatives in interval type-2 fuzzy logic system,' IEEE Trans. Fuzzy Syst., vol. 12, no. 1, pp. 84–98, Feb. 2004 [48] C.C. Tsai and C.K. Chan, 'Intelligent Backstepping Sliding-Mode Control Using Recurrent Interval Type 2 Fuzzy Neural Networks for a Ball-Riding Robot,' in Proceedings of 2012 International Conference on Fuzzy Theory and Its Applications National Chung Hsing University, Taichung, Taiwan, Nov.16-18, 2012. [49] C.K. Chan,C. C. Tsai, 'Intelligent backstepping sliding-mode control using recurrent interval type 2 fuzzy neural networks for a ball robot with a four-motor inverse-mouse ball drive,' Proceedings of SICE 2012 Annual conference, Akita, Japan, 20-23 August, 2012. [50] TMS320F28335 product page, http://www.ti.com/product/tms320f28335/ [Online], 2013. Available:
摘要: This thesis presents techniques and methodologies for system design, mathematical modeling, adaptive self-balancing and speed controllers of an electric seatless unicycle. System design, key components and control architecture of the unicycle are described in details. A novel mathematic model of the vehicle is established using Lagrangian mechanics by considering the motor torque as an input. Two types of controllers based on the linearized and nonlinear models of the vehicle are designed to achieve self-balancing and speed-command control, respectively. In the presence of system uncertainties, two types of intelligent adaptive motion controllers using fuzzy-basis function networks (FBFN) and interval type 2 fuzzy neural networks (IT2FNN) are respectively proposed to achieve self-balancing and speed control. Simulations and experimental results are conducted to verify the effectiveness and performance of the proposed control methods.
本論文的目的是在於提出新型無座式電動獨輪車之系統設計,推導數學模型、自平衡控制及速度命令控制之技術與方法。本文首先詳細地描述該無座式電動獨輪車之控制系統設計,各主要元件以及控制架構。在數學模型方面,不同於倒單擺模型,本研究以馬達轉矩為輸入,並運用利拉格朗日運動力學建立一種新型電動獨輪車之動態方程式。在控制器設計方面,分別使用線性和非線性模型來完成兩種控制器設計,用以於達到傾斜角控制與速度命令控制。在系統存在不確定性情況下,推導結合模糊基底類神經網路與區間第二型模糊類神經網路的兩種智慧適應運動控制策略,用以實現機台平衡與速度控制。模擬與實驗數據用以驗證所提出控制器之有效性與性能。
URI: http://hdl.handle.net/11455/91129
其他識別: U0005-2106201420341600
文章公開時間: 2017-12-16
Appears in Collections:電機工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.