Please use this identifier to cite or link to this item:
標題: Hierarchical Robust Motion and Force Control of Planar Dual Arm Robot with Flexible Joints
作者: 管言倫
Yan-Lun Guan
關鍵字: Dual Arm Robot
Flexible Joints
Robust Control
引用: [1] L. M. Sweet and M. C. Good, 'Redefinition on the robot motion control problem:effects of plant dynamics,drive system constraints,and user requirement' IEEE Conference on Decision and Control, pp. 724-732, 1984 [2] D. Li, J. W. Zu and A. A. Goldenberg, 'Dynamic modeling and mode analysis of flexible-link, flexible-joint robots' Mechanism and Machine Theory, vol. 33, no. 7, pp. 1031-1044, Oct. 1998 [3] M. W. Spong, 'Modeling and control of elastic joint robots' Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, vol. 109, no. 4, pp. 310-319, Dec. 1987 [4] N. Hogan, 'Impedance Control: an Approach to Manipulation. Part I - Theory' ASME Journal of Dynamic Systems, Measurement, and Control, vol. 107, pp. 1-7 ,1985 [5] N. Hogan, 'Impedance Control: an Approach to Manipulation. Part II - Implementation' ASME Journal of Dynamic Systems, Measurement, and Control, vol. 107, pp. 8-16,1985 [6] N. Hogan, 'Impedance Control: an Approach to Manipulation. Part III - Application' ASME Journal of Dynamic Systems, Measurement, and Control, vol. 107, pp. 17-24,1985 [7] N. Hogan, 'Stable Execution of Contact Tasks Using Impedance Control' IEEE International Conference on Robotics & Automation, vol. 2, pp. 1047-1054,1987 [8] Christian Ott, 'On the Passivity-Based Impedance Control of Flexible Joint Robots' IEEE International Conference on Robotics and Automation, Page(s): 416 - 429, 2008 [9] M. T. Mason, 'Compliance and Force Control for Computer Controlled Manipulators' IEEE Transaction on Systems, Man and Cybernetics , vol. SMC-11, pp. 418-432, 1981 [10] M. H. Raibert and J. J. Craig, 'Hybrid Position/Force Control of Manipulators' ASME Journal of Dynamic Systems, Measurement, and Control, pp.126-133, 1981 [11] J.T. Wen and K. Kenneth, 'Motion and force control of multiple robotic manipulators' Automatica, vol. 28, no. 4, pp. 729-743, 1992. [12] J. K. Mills and A. A. Goldenberg, 'Force and Position Control of Manipulators During Constrained Motion Tasks' IEEE Trans. in Robotics and Automation, vol. 5,no. 4, pp. 30-46 , Feb. 1989 [13] K. P. Jankowski and H. Van Brussel, 'Inverse dynamics task control of flexible joint robots - I continuous-time approach' Mechanism and Machine Theory, vol. 28, no. 6, pp. 741-749, Nov. 1993 [14] J. Wittenburg, 'Nonlinear Equations of Motion for Arbitary System of Interconnected Rigid Bodies' Symposium on the Dynamics of Multibody System, Munich, Germany, Pro. Published by Spring-Verlag, K. Magnus, editor , 1987 [15] J. Wittenburg and U. Wolz, 'MESA VERGE: A Symbolic Program for Nonlinear Articulater Rigid Body Dynamics' ASME Design Engineering Technical Conference, 1985 [16] R. P. Paul, 'Modeling , Trajectory Calculation,and Servoing of a Computer Controlled arm',1972 [17] J.J.E. Slotine and S.S. Sastry, 'Tracking control of nonlinear systers using sliding surfaces with application to robot manipulators' Int. J. Control, vol.38,pp.465-492,1983 [18] K.S. Yeung and Y.P.Chen, 'A new controller design for manipulators using the theory of variable structure systems, 'IEEE Trans. On Automation Control,Vol.33,pp.200-206,1988
摘要: Dual-arm robots holding an object can be seen as a closed chain multi-body mechanical system. The Lagrange multiplier theory can be used to derive the constrained dynamic equations of motor. This thesis extends the force control that Lagrange Multiplier is used to dual-arms robot with flexible joints. The original 4th order dynamic system is first decomposed into two subsystem, an arm system and a motor system, then a hierarchical controller is designed for these two subsystem. To overcome the problem of uncertain parameter, the concept of sliding control is employed to Lagrange Multiplier control, and then proposing the sliding controller. Simulation results show that both the position and force of the dual-arm system can be controlled effectively by the proposed control method.
夾持物件後的雙機械臂系統,我們將其視為閉練的多體機械系統。建立此系統的動態方程式時,應用Lagrange Multiplier定理,可將系統的拘束方程式帶入動態方程式之中,求得拘束動態方程式。本文以控制Lagrange Multiplier控制法間接達到力量控制的觀念,應用於撓性關節機械臂系統上,在控制器的推導上,使用階層式的概念,將系統分解兩個二階系統,將撓性關節平面雙機械臂分解為兩個子系統手臂端系統與馬達端系統。為了解決系統參數不確定的問題,將順滑控制觀念導入Lagrange Multiplier控制法,設計順滑位置力量控制策略。最後由電腦數值模擬結果得知,本文所設計的控制法在具有參數誤差的情況下,仍可得到良好的控制效果。
文章公開時間: 2016-07-31
Appears in Collections:機械工程學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.