Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91322
標題: Design and Fabrication of Magnetic Microsensors based on Magnetotransistor
磁電晶體式三維磁場感測器之設計與製作
作者: 林彥男
Yen-Nan Lin
關鍵字: Magnetic sensor
Magnetotransistor
CMOS
磁場
磁感測
磁電晶體
CMOS
引用: [1] http://www.myhome.net.tw/2015_02/p02.htm [2] http://www.rezwave.com.tw/downloadfile/field.pdf [3] http://chipdesignmag.com/display.php?articleId=5323 [4] http://www.narlabs.org.tw/tw/epaper/section_1/information.php?SECTION_1_ID=57 [5] 游金湖編譯, 磁性感測器及使用技術, 建興出版社。 [6] J. Lenz and A.S. Edelstein, 'Magnetic sensors and their applications,' IEEE Sensors Journal, Vol. 6, pp. 631-649, 2006. [7] S. Kordic, 'Integrated 3-D magnetic sensor based on an n-p-n transistor,' Electron device letters, Vol. EDL-7, pp. 196-198, 1986. [8] M. Paranjape, Lj. Ristic, and I.Filanovxky, 'A 3-D vertical Hall magnetic field sensor in CMOS technology,' Transducers '91, pp. 1081-1084, 1991. [9] M. Zhang and D. Misra, 'A novel 3-D magnetic field sensor in standard CMOS technology,' Transducers '91, pp. 1085-1088, 1991. [10] T. Smy and Lj. Ristic, 'Optimization of magnetotransistor structure in CMOS technology,' IEEE Transactions on Magnetics, Vol. 28, pp. 2024-2030, 1992. [11] H. Trujillo and A. Nagy, 'Influence of topology on the response of lateral magnetotransistors,' Sensors and Actuators A: Physical, Vol. 45, pp. 179-182, 1994. [12] C. Riccobene, K. Cartner, G. Wachutka, H. Baltes, and W. Fichtner, 'Full three- dimensional numerical analysis of multi-collector magnetotransistors with directional sensitivity,' Sensors and Actuators A: Physical, Vol. 46, pp. 289-293, 1995. [13] M. Paranjape, L.M. Landsberger, and M. Kahrizi, 'A CMOS-compatible 2-D vertical Hall magnetic-field sensor using active carrier confinement and post-process micromachining,' Sensors and Actuators A: Physical, Vol. 53, pp. 278-283, 1996. [14] Ch. Roumenin, P. Nikolova, and A. Ivanov, 'Magnetotransistor sensor with amperometric output,' Sensors and Actuators A: Physical, Vol. 69, pp. 16-20, 1998. [15] M.G. Guvench and H.S. Chu, 'Surface related degradation of sensitivity in lateral transistor magnetic sensors,' Biennial University/Government/Industry Microelectronics Symposium - Proceedings, pp. 142-145, 1999. [16] Y.G. Song, J.G. Ryu, Y.S. Choi, and N.H. Kim, 'Fabrication and characteristics of the suppressed sidewall injection magnetotransistor using a CMOS process,' Sensors and Actuators A: Physical, Vol. 130-131, pp. 99-104, 2006. [17] C. Leepattarapongpan, T. Phetchakul, N. Penpondee, P. Pengpad, A. Scrihapat, E. Chaowicharat, C. Hrumanum, and A. Poyai, 'The low power 3D-magnetotransistor based on CMOS technology,' Proceedings of IEEE Sensors, pp. 500-503, 2011. [18] D.K. Cheng, Field and Wave Electromagnetics, Second Edition, Addison-Wesley, 1989. [19] 國家實驗研究院儀器科技研究中心, 微機電系統技術與應用, 國家實驗研究院儀器科技研究中心, 2004。 [20] B.G. Streetman and S.K. Banerjee, Solid state electronic device, Prentice Hall. [21] TCAD Sentaurus manual, sysnopsis, version G-2012.06. [22] S.A. Sedra and K.C. Smith, Microelectronic Circuits, New York: Oxford University Press, 2004. [23] P.C. Sen, Principles of Electric Machines and Power Electronics, Wiley, 2012. [24] N.H.E. Weste and D.M. Harris, Integrated Circuit Design, Global Edition, 2011. [25] S. Averine, Y.C. Chan, and Y.L. Lam, 'Evaluation of Schottky contact parameters in metal-semiconductor-metal photodiode structures,' Applied Physics Letters, Vol. 77, pp. 274-276, 2000. [26] 史常忻著, 金屬-半導體-金屬光電探測器, 上海交通大學出版社, 2000。 [27] S.M. Sze, D.J. Coleman, JR., and A. Loya, 'Current transport in metal- semiconductor-metal structures,' Solid-State Electronics, Vol. 14, pp. 1209, 1971. [28] D.A.Neamen, Semiconductor physics and device, McGraw-Hill Higher Education, 2003. [29] 劉博文編著, 光電元件導論, 全威圖書, 2013。 [30] S.V. Averine, Y.C. Chan, and Y.L. Lam, 'Geometry optimization of interdigitated Schottky-barrier metal-semiconductor-metal photodiode structures,' Solid-State Electronics, Vol. 45, pp. 441-446, 2001.
摘要: A new CMOS-based sensor for detecting three-dimensional magnetic field is presented. This sensor is designed and fabricated using the commercial 0.18 um CMOS (complementary metal oxide semiconductor) process. The magnetotransisitor structure is introduced for the magnetic field sensor. The principle of magnetotransisitor is identical to bipolar transistor. Therefore, it employs the standard NPN BJT structure of the CMOS process to build the device. The sensing mechanism of the magnetic sensor is based on Hall effect. In this study, the notion of design has combined lateral and vertical Hall sensor concept. The sensitivity of the sensor depends on the geometrical factor, G of the Hall cell. By using the STI structure, the optimization of Hall like cells can be obtained. The layout is introduced a cross shape, and the terminals are placed symmetrically. Besides, the p-n junction effect is modulated by changing the property of carrier movement. It is observed that there is a promising feature of cross-sensitivity effect. A comparison on the measurement and simulation by TCAD Sentaurus program, the results can find the electrical properties and the deflected paths of carriers. This work investigates and analyzes all characteristics of the magnetic sensor to enhance its performances.
本研究利用CMOS 0.18 μm標準製程,製作磁電晶體式三維磁感測器,CMOS積體電路製程技術已相當成熟,元件特性穩定,故非常適合用於製作微感測器元件。利用半導體製程技術製作感測器元件,已成為目前的研究趨勢,不僅可以達到微小化的目的,且可與邏輯運算電路整合,實現感測器整合單晶片技術。本研究之磁感測器採用磁電晶體式 (Magnetotransistor)結構,運作原理為電子電洞的擴散與複合,相同於雙載子接面電晶體 (Bipolar junction transistor, BJT),故以製程中標準NPN垂直式雙載子接面電晶體結構為基礎,經由改變端點的配置與幾何結構設計,達到磁場感測的效果。感測機制則是運用霍爾效應 (Hall effect),當外部磁場與電流作用時,會產生勞倫茲力 (Lorentz force),半導體內的帶電載子受到勞倫茲力的影響而發生偏轉,在端點間產生電壓降,此即為霍爾電壓。霍爾感測器為應用最廣泛的磁感測器,磁電晶體則是霍爾感測器的進階應用,存在於霍爾感測器的缺點,在磁電晶體中可以獲得改善,且擁有更高之感測解析度。而相較於傳統磁電晶體結構,本磁感測器在端點配置上改良設計,結合水平式霍爾感測器與垂直式霍爾感測器的結構概念,並善加利用BJT元件之物理特性,使感測性能大幅提升,實現單一元件結構感測三軸磁場的目標。在元件下線製作前,經由模擬預估感測性能,藉此設計最佳之感測結構配置,模擬工具則是利用Synopsys Sentaurus TCAD半導體元件模擬軟體,可建立3D元件模型,並給定必要之物理參數模型,及磁場的極性與強度定義。藉由模擬結果可瞭解半導體中的載子濃度分佈,及受磁場作用後的載子偏轉情形,有助於掌握磁電晶體在不同操作模式下之感測特性。本研究之磁感測器性能量測,將針對不同的基-射極接面偏壓VBE,以及集極與感測端的最佳偏壓配置,進行完整感測性能之分析,以基極1.5 V為例,此時,最佳之集極與感測端偏壓為3.38 V,而其磁場感測結果,x方向磁場感測靈敏度為509.27 mV/T,y方向感測靈敏度為466.54 mV/T,z方向磁場感測靈敏度為59.09 mV/T。
URI: http://hdl.handle.net/11455/91322
文章公開時間: 2018-07-29
Appears in Collections:機械工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.