Please use this identifier to cite or link to this item:
標題: Clamped-Edge Bimorph Disk Type Piezoelectric Transformer
作者: 吳敬強
Hadi Gunawan
關鍵字: piezoelectric transformer
bimorph disk
electromechanical modeling
引用: [1] Eddy Wells, 'Comparing magnetic and piezoelectric transformer approaches in CCFL applications,' Analog Applications Journal, 1Q 2002 [2] Tae-Shik Yoon, Man-Sun Yun, 'Piezoelectric transformer with pinwheel type electrode,' Patent Application Publication, Pub. No. US2010/0109487 A1, Pub. Date May 6, 2010 [3] C. A. Rosen, 'Ceramic transformers and Filters,' Proceeding of electronic Components Symposium, Washington, D. C., May 1-3 (1956) 205-211 [4] Y.-H. Hsu, C.-K. Lee, W.-H. Hsiao, 'Optimizing piezoelectric transformer for maximum power transfer,' Smart Material and Structure, 12(2003) 373-83 [5] R.-L. Lin, 'Piezoelectric transformer characterization and application of electronic ballast,' PhD Dissertation, Virginia Polytechnic Institute and state University, USA, 2001 [6] Alfredo Vázquez Carazo, '50 Years of Piezoelectric Transformers. Trends In The Technology,' Department of R&D Engineering, Virginia 23508, U.S.A [7] Shine-Tzong Ho, ' Electromechanical analysis of a ring-type piezoelectric transformer,' Mechatronic Systems, Simulation, Modeling and Control, March 1, 2010 [8] Hu, Jun Hui; Li, Hing Leung; Chan, Helen Lai Wah; Choy, Chung Loong, 'A ring-shaped piezoelectric transformer operating in the third symmetric extensional vibration mode,' Sensors and Actuators, A: Physical, v 88, n 1, p79-86, January 20, 2001 [9] M. C. Do, H. Guldner, 'High output voltage DC/DC converter based on parallel connection of piezoelectric transformers,' International Symposium on Power electronics, Electrical Drives, Automation and Motion, Taormina, Italy, May 23-26,(2006) S18 [10] T. Inoue, S. Hamamura, M. Yamamoto, A. Ochi, Y. Sasaki, 'AC-DC converter based on parallel drive of two piezoelectric transformer,' Japanese Journal of Applied Physics, 47 (2008) 4011-4014 [11] Angel, José-Prieto Miguel; Juan, Dí Fernando, Nuño; David, Gacio; Villegas,az;Pedro J, 'Parallel connection of resonant converters based on piezoelectric transformers,' 2009 13th European Conference on Power Electronics and Applications, EPE '09, 2009 [12] 黃威旗,「圓形疊層式壓電變壓器應用於電源轉換器之研究」,碩士論文,國立成功大學電機工程研究所,臺南,(2003)。 [13] J.H. Park, S.M. Lee, S.J. Choi, B.H. Cho, 'Design consideration of parallel–parallel connected piezoelectric transformer for thermal balance,' Japanese Journal of Applied Physics, 46 (2007)7067–7072 [14] N. E. duToit, B. L. Wardle, S.-G. Kim, 'Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters,' Integrated Ferroelectrics, 71 (2005) 121-160 [15] S. T. Ho, 'Electromechanical Model of a Longitudinal Mode piezoelectric Transformer,' The Seventh International Conference on Power Electronics and Drive Systems, Bangkok, Thailand, November 27-30, (2007) 267-272 [16] Y.H. Huang, W. Huang, 'An Improved Equivalent Circuit Model of Radial Mode Piezoelectric Transformer,' IEEE Transactions on Ultrasonics, Ferroelectrics,and Frequency Control, 58 (2011) 1069 [17] A. Erturk, D. J. Inman, 'A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters,' Journal of Vibration and Acoustics, 130 (2008) 041002 [18] S. Roundy, P. K. Wright, J. M. Rabaey, 'A Study of Low Level Vibrations as a Power Source for Wireless Sensor Nodes,' Computer Communications,26(2003) 1131-1144 [19] N. Wu, Q. Wang, S.T. Quek, 'Free vibration analysis of piezoelectric coupled circular plate with open circuit,' Journal of Sound and Vibration, 329 (2010) 1126-1136 [20] 陳奇劭,「邊緣固定式懸臂樑壓電變壓器」,碩士論文,國立中興大學機械工程研究所,台中,(2011)。 [21] T. Ikeda, Fundamentals of Piezoelectricity, New York, NY: Oxford University Press, 1990. [22] A. Erturk, and D.J. Inman, 'On mechanical modeling of cantilevered piezoelectric vibration energy harvesters,' Journal of Intelligent Material Systems and Structures, 19 (2008) 1311-1325 [23] T. K. Caughey, and M. E. J. O'Kelly, 'Classical normal modes in damped linear dynamic systems,' Journal of Applied Mechanics, 32 (1965) 583–588. [24] Lucyna LENIOWSKA, 'Vibration control of a fluid-loaded circular plate via pole placement, Mechanics, vol.27, no.1, 2008. [25] IEEE Standard on Piezoelectricity, IEEE,(1987)New York [26] 彭泰龍 「壓電式發電裝置研究」 碩士論文 國立中興大學機械工程研究所,,,,台中,(2007)
摘要: This study provides an experiment about clamped edge bimorph piezoelectric disk with annular electrode as a transformer. The transformer structure consisted of two identical piezoelectric layers with annular shape on exposed electrodes where the outer diameter of the electrode is the same as the diameter of the structure, having equal thickness, isolated by insulating material and clamped completely on the edge of piezoelectric layers. The first piezoelectric layer serves as actuator and the second one serves as sensor. A sinusoidal wave is generated on actuating layer which vibrates the transformer and converts an electrical energy into mechanical energy at the actuator and vice-versa at the sensor. The neutral axis of this structure is located at the centre of thickness direction which causes one of the piezoelectric layers under tensile stress and the other under compressive stress so that no electric charges will be neutralized when vibration. A theoretical analysis has been developed by using equilibrium of moment to achieve the governing equation and also the resonance frequency of the transformer. An electromechanical model is derived to analyze the electrical characteristic of the transformer. The resulting equations are further reduced to the first resonance frequency case. Voltage, current, and output power are presented. Inner diameter of annular electrode, diameter and thickness of the structure will affect voltage ratio. When the inner diameter of actuating electrode approaches to zero (electrode becomes circular shape), it achieves optimal actuating moment and reach maximum output voltage at the first resonance frequency excitation. On the contrary, the output voltage reaches its minimum value when the inner diameter of sensing electrode approaches to zero. In addition, finite element method is used to support and verify the experimental results. As the goal, the error between analytical and experimental values should be smaller than 10%.
本論文提出並研究邊緣固定式雙層圓盤壓電變壓器,此變壓器之結構以兩層相同的壓電材料與環狀電極設計於外露之表面,外徑電極的尺寸與結構之直徑相同,兩層壓電層具有同樣的厚度而兩者之間絕緣,並此壓電層之邊緣完全被固定住。 第一層之壓電層作為一致動器而另外一層作為一感測器。當正弦波輸入到致動層時激動了變壓器將電能轉換成機械能而相反的在感測層將機械能轉回電能。 此結構中性軸之位置剛好在解構厚度之正中央導致其中壓電層受拉應力而另外一層受壓應力,因此產生之電荷不會互相抵消。理論分析以力矩帄衡方程式去推導可得到變壓器之控制方程式以及共振頻率。 以機電偶合模型之推導進行變壓器的電特性分析。將推導得到的方程式簡化成只考慮在第一諧振共振時之狀況,並且得到電壓、電流以及輸出功率等結果而發現內徑環狀電極、結構之直徑和厚度都會影響變壓比。將變壓器致動在第一諧振頻率下,致動電極之內徑趨近於零時(電極變成圓狀)可以產生最佳之致動力矩而得到最大之輸出電壓。但,當感測電極之內徑趨近於零時輸出電壓反而達到最小值。 本研究也藉由有限元素法之輔助進行變壓器結構之模態分析來驗證實驗結果而最後數學模型以及詴驗值可以達到誤差小於 10%為目標。
文章公開時間: 2018-05-11
Appears in Collections:機械工程學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.