Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91435
標題: System Identification and Tuning Verification of TCP Dynamic Trajectory for Machine Tools
工具機刀尖點動態軌跡之進給系統鑑別與調機驗證
作者: 林冠融
Kuan-Jung Lin
關鍵字: mechatronic
servo control
system identification
機電整合
伺服控制
系統鑑別
引用: [1] M. S. Kim, S. C. Chung, A systematic approach to design high-performance feed drive systems, International Journal of Machine Tools and Manufacture, October 45:1421-1435, 2005. [2] Agust?n Casquero, Rogelio Hecker, Diego Vicente y Gustavo Flores, ' Parameter Identification of A Feed Drive for High Speed Machine Tools', 20th International Congress of Mechanical Engineering, November 15-20, 2009, Gramado, RS, Brazil. [3] Y. Altintas, A. Verl, C. Brecher, L. Uriarte, G. Pritschow, 'Machine tool feed drives', CIRP Annals - Manufacturing Technology, Volume 61, Issue 2, 2012, Page 837. [4] K. Lee, S. Ibaraki, A. Matsubara, Y. Kakino, Y. Suzuki,Y. Yamaoka, 'A servo parameter tuning method for high-speed NC machine tools based on contouring error measurement,' Proceedings of the Symposium on Flexible Automation, Hiroshima, Japan, July 2002, pp. 14-19. [5] A. Matsubara, Y. Kakino, Y. Watanabe, 'Servo Performance Enhancement of High Speed Feed Drives By Damping Control,' Poceedings of the Japan USA Symposium on Flexible Automation, July 2000, pp. 23-26. [6] P.Parenti, G.Bianchi, N.Cau, P.Albertelli, M.Monno, 'A Mechatronic study on a Model-Based Compensation of Inertial Vibration in a High-Speed Machine Tool,' Journal of Machine Engineering, January 2011, pp. 91-104. [7] Y. Altintas, 2005, 'Virtual Machine Tool,' CIRP Annals, Vol.54, I.2, pp.115-138. [8] Lee, K., Ibaraki, S., Matsubara, A., Kakino, Y., Suzuki, Y., Arai, S., Braasch, J., 2002, 'A Servo Parameter Tuning Method for High-Speed NC Machine Tools based on Contouring Error Measurement,' Laser Metrology and Machine Performance VI, WIT Press, Southampton, UK. [9] K. Erkorkmaz, Y. Altintas, C.-H. Yeung, 2006, 'Virtual computer numerical control system,' CIRP Annals, Vol.55, I.1, pp.399-402. [10] 蔡孟勳 (2013)。《工具機控制器原理與實務》。臺北:五南圖書出版社。 [11] 周國華 (2013)。《工具機應用設計》。臺北:翰盧圖書。 [12] Tony Schmitza, John Ziegertb,,'Dynamic evaluation of spatial CNC contouring accuracy',aAutomated Production Technology Division, Manufacturing Engineering Laboratory, National Institute of Standards and Technology,Gaithersburg, Maryland,bDepartment of Mechanical Engineering, University of Florida, Gainesville, Florida,Precision Engineering 24 (2000) 99–118 [13] 陳慶盈,'工具機進給系統動態分析與測試',大葉大學機械工程學系暨研究所碩士論文,1999 [14] 賴永祥,'工具機高速進給系統之循跡精度分析',國立中正大學機械工程學系暨研究所碩士論文,1999 [15] 黃柏翰,'插補與控制器參數調校之研究' 國立中正大學機械工程學系暨研究所碩士論文,2012 [16] 黃泓緯,'智慧型加工控制系統之研發' 國立中正大學機械工程學系暨研究所碩士論文,2011 [17] Kristofer Smeds, Xiaodong Lu,'Feed-system autotuning of a CNC machining center: Rapid system identification and fine gain tuning based on optimal search', Department of Mechanical Engineering, Sogang University,Precision Engineering 36 (2012) 339– 348 [18] 王智能,'工具機傳動系統機電整合設計及循跡精度分析' 國立中興大學機械工程學系暨研究所碩士論文,2013 [19] 歐士奇,'多軸工具機智能化控制之研究',中原大學機械工程學系暨研究所碩士論文,2007 [20] 李明樺,'CNC工具機智能化複合功能之研究',中原大學機械工程學系暨碩士學位論文,2006 [21] Yoshiake Kakino, Kazutak Akimoto,'Measurement of Contouring Motion Accuracy of The NC Machine Tools by the Cross Grid Encoder Test', Japan/USA Symposium on Flexible Automation,Vol.2,ASME 1996 [22] 嚴國維,'高加減速PCB鑽孔機進給系統設計與結構動態分析',國立清華大學動力機械工程學系暨研究所碩士論文,2007 [23] 吳嘉晉,'進給驅動系統之動態模擬與分析',國立清華大學動力機械工程學系暨研究所碩士論文,2003 [24] 許佳賢,'工具機進給系統之動態分析',國立中正大學機械工程學系暨研究所碩士論文,1999 [25] 張哲豪,'工具機伺服控制虛擬技術之研究' 國立中興大學機械工程學系暨研究所碩士論文,2014 [26] G. Pritschow, J. Bretschneider, 'A Self-Tuning Controller for Digitally Controlled Electromechanical Servo Drives in Machine Tools,' Proceedings of the CIRP Annals - Manufacturing Technology, Stuttgart. 1999, Vol. 48.
摘要: In the industry of machine tool, installing the machine tool often need to consider the problem which is between mechanical structure and servo control. Therefore we develop the technology of Mechatronics. The purpose of this paper is tuning the relevant parameters between mechanical structure and servo control. By the basis of mechatronics technology, we can identify the characteristic of mechanical frequency response. Combined with control law, we may simulate and analysis the response of machine tool. Finally, finding the optimal parameters, we will improve the performance and bandwidth of the machine tool. Due to system identification, we establish the model of mechatronics and frequency response function in each axis. According to the measuring position of tool center point (TCP) which related to the table at the machine tool, we completely obtain the dynamic response of the machine tool. Result the experiments, the bandwidth of machine A and B in current loop also higher than 1000Hz. The bandwidth of the motor model A at X-axis is 119Hz; Y-axis is 58Hz. Model B at X-axis is 44Hz; Y-axis is 36Hz. The resonance frequency of the mechanic model A at X-axis is 64,145,173Hz; Y-axis is 34, 69, 113Hz. Model B at X-axis is 46, 109, 181Hz; Y-axis is 51, 71, 102Hz. According to the experience rule of servo tuning, we find the optimal parameter. At X-axis of machine A, GM is infinite; PM is 29.99deg.The bandwidth of velocity loop is 134.26Hz and position loop is 17.92Hz. At Y-axis of machine A, GM is infinite; PM is 30.89deg. The bandwidth of velocity loop is 108.93Hz and position loop is 8.79Hz. At X-axis of machine B, GM is 6.58dB; PM is 41.33deg. The bandwidth of velocity loop is 27.02Hz and position loop is 14.93Hz. At Y-axis of machine B, GM is 8.77dB; PM is 31.97deg. The bandwidth of velocity loop is 83.24Hz and position loop is 14.52Hz.
在工具機產業上,實際組裝機台運行時,往往需考慮到伺服電控與機械結構匹配等問題,因此發展出機電整合相關技術。本論文研究目的以機電整合技術為基礎,透過伺服控制與機械結構之相關參數調整,鑑別機台響應特性,結合控制法則,模擬分析機台響應。在最佳調整參數下,改善加工性能、響應頻寬等特性。建立機電整合模型,透過系統鑑別(System Identification),建立出各進給軸之頻率響應函數(Frequency Response Function, FRF),且針對機台之刀尖點(Tool Center Point, TCP)做為輸出量測端,鑑別出各個進給軸方向相對於刀尖點位移之頻率響應函數,得到整機之動態響應。 由實驗結果得知,機台A、B之X、Y軸電流迴路響應頻寬,皆高於1000Hz。速度控制系統鑑別之頻寬,機台A之X軸為119Hz;Y軸為58Hz。機台B之X軸為44Hz;Y軸為36Hz。機械頻率響應鑑別之主要共振頻率,機台A之X軸為64、145、173Hz;Y軸為34、69、113Hz。機台B之X軸為46、109、181Hz;Y軸為51、71、102Hz。 在伺服調機方面,根據經驗法則,找出最佳參數值,其機台A之X軸G.M.為無窮大dB,P.M.為29.99(deg),速度響應頻寬為134.26Hz,位置響應頻寬為17.92Hz;Y軸G.M為無窮大dB,P.M.為30.89 (deg),速度響應頻寬為108.93Hz,位置響應頻寬為8.79Hz。機台B之X軸G.M.為6.58dB,P.M.為41.33 (deg),速度響應頻寬為27.02Hz,位置響應頻寬為14.93Hz;Y軸G.M.為8.77dB,P.M.為31.97 (deg),速度響應頻寬為83.24Hz,位置響應頻寬為14.52Hz。最後透過步階響應,呈現調機結果。
URI: http://hdl.handle.net/11455/91435
文章公開時間: 2017-08-31
Appears in Collections:機械工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.