Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91436
標題: Performance improvement on an evaporator in a four-bed adsorption heat pump
一個四床吸附式熱泵中蒸發器之性能改良
作者: 邱建翰
Chien-Han Chiu
關鍵字: adsorption heat pump
silica gel
specific cooling capacity
coefficient of performance
吸附式熱泵
矽膠
冷卻能力
性能係數
引用: [1] S.I. Prokopiev, Y.I. Aristov, 'Concentrated aqueous electrolyte solutions: analytical equations for humidity-concentration dependence', Journal of Solution Chemistry, Vol. 29, pp. 633-649, 2000. [2] A.R.M Rezk, R.K. Al-Dadah, 'Physical and operating conditions effects on silica gel/water adsorption chiller performance', Applied Energy, Vol. 89, pp. 142-149, 2012. [3] A.R.M Rezk, R.K. Al-Dadah, S. Mahmoud, A. Elsayed, 'Effects of contact resistance and metal additives in finned-tube adsorbent beds on the performance of silica gel/water adsorption chiller', Applied Thermal Engineering, Vol. 53, pp. 278-284, 2013. [4] Z. Lu , R. Wang, Z. Xia, L. Gong, 'Experimental investigation adsorption chillers using micro-porous silica gel–water and compound adsorbent- methanol', Energy Conversion and Management, Vol. 65, pp. 430–437, 2013. [5] D. Wang , J. Zhang , Y. Xia , Y. Han , S. Wang, 'Investigation of adsorption performance deterioration in silica gel–water adsorption refrigeration', Energy Conversion and Management, Vol. 58, pp. 157–162, 2012. [6] D. Wang , J. Zhang, Q. Yang, N. Li, K. Sumathy, 'Study of adsorption characteristics in silica gel-water adsorption refrigeration', Applied Energy, Vol. 113, pp. 734-741, 2014. [7] X. Zheng, L.W. Wang, R.Z. Wang, T.S. Ge, T.F. Ishugah, 'Thermal conductivity, pore structure and adsorption performance of compact composite silica gel', International Journal of Heat and Mass Transfer, Vol. 68, pp. 435-443, 2014. [8] R.J.H. Grisel, S.F. Smeding, R.d. Boer, 'Waste heat driven silica gel/water adsorption cooling in trigeneration', Applied Thermal Engineering, Vol. 30, pp. 1039-1046, 2010. [9] A. Freni, F. Russo, S. Vasta, M. Tokarev, Yu.I. Aristov, G. Restuccia 'An advanced solid sorption chiller using SWS-1L', Applied Thermal Engineering, Vol.27, pp. 2200-2204, 2007. [10] H. Niazmand, H. Talebian, M. Mahdavikhah, 'Bed geometrical specifictions effects on the performance of silica gel/water adsorption chillers', International Journal of Refrigeration , Vol. 35, pp. 2261-2274, 2012. [11] Y.I. Aristov, G. Restuccia, G. Cacciola, V.N. Parmon, 'A family of new working materials for solid sorption air conditioning systems', Applied Thermal Engineering, Vol. 22, pp. 1991-2904, 2002. [12] J.Y. San, 'Analysis of the performance of a multi-bed adsorption heat pump using a solid-side resistance model', Applied Thermal Engineering, Vol. 26, pp. 2219-2227, 2006. [13] J.Y. San, H.C. Hsu, 'Performance of a multi-bed adsorption heat pump using SWS-1L composite adsorbent and water as the working pair', Applied Thermal Engineering, Vol. 29, pp. 1606-1613, 2009. [14] J.Y. San, W.M. Lin, 'Comparison among three adsorption pairs for using as the working substances in a multi-bed adsorption heat pump', Applied Thermal Engineering, Vol. 28, pp. 988-997, 2008. [15] X. Wang, H.T. Chua, K.C. Ng, 'Experimental investigation of silica gel-water adsorption chillers with and without a passive heat recovery scheme', International Journal of Refrigeration, Vol. 28, pp. 756-765, 2005. [16] B.N. Okunev, A.P. Gromov, V.L. Zelenko, I.S. Glaznev, D.S. Ovoshchnikov, L.I. Heifets, 'Effect of residual gas on the dynamics of water adsorption under isobaric stages of adsorption heat pumps: mathematical modelling', International Journal of Heat and Mass Transfer, Vol.53, pp.1283-1289, 2010. [17] N. Enteria, H. Yoshino, A. Mochida , 'Review of the advances in open-cycle absorption air-conditioning systems', Renewable and Sustainable Energy Reviews, Vol. 28, pp. 265-289, 2013. [18] 許惠琦,以SWS-1L複合吸附劑/水為工作配對之一個吸附式熱泵之性能分析,碩士論文,中興大學機械系,2007。 [19] 林俊宏 一個多床吸附式熱泵在非等模式操作時間下之性能 碩士文,中興大學機械系,2008。 [20] 林威億,一個多床吸附式熱泵操作時最佳模式時間之研究,碩士論文,中興大學機械系,2009。 [21] 林永宸,一個具四個吸附器之吸附式熱泵之分析與測試,碩士論文,中興大學機械系,2010。 [22] 林瑋旻,吸附配對之特性對熱泵性能之影響,碩士論文,中興大學機械系,2006。 [23] 鄭鼎偉,蒸發器內冷媒之循環對一個吸附式熱泵之冷卻性能之影響,碩士論文,中興大學機械系,2012。 [24] 蔡阜剛 一個四床吸附式熱泵之性能改良 碩士論文 中興大學機械系,2013。 [25] S.J Kline, F.A. McClintock, 'Describing uncertainties in single-sample experiments', Mechanical Engineering, Vol. 75, pp. 3-8, 1953. [26] J.Y. San, F.K. Tsai, 'Testing of a lab-scale four-bed adsorption heat pump', Applied Thermal Engineering', Vol. 70, pp. 274-281, 2014.
摘要: This work deals with a performance improvement of a lab-scale four-bed adsorption heat pump. A regular density silica gel and water were used as adsorption pairs. In the experiment, two sets of operating conditions were considered respectively. The specifiic cooling power (SCP) and the coefficient of performance (COP) of the adsorption heat pump were measured. The improvement on the system includes the following four items: () The original AC-current refrigerant circulation pump was replaced by a DC-current pump for controlling rotational speed of pump vanes. () A transparent U-tube using for observing the refrigerant (water) flow was installed between the condenser and the evaporator. () A demister composed of multi-layer stainless mesh screens was made and installed in the evaporator to prevent small water droplets being sucked into the adsorbers. () In the evaporator, the direction of the nozzle was adjusted in order to spray the circulating refrigerant on the coiled copper tube. In the experiment, the regeneration tempeature (TG ) was fixed at 78 ± 0.3oC . At Vcw = 2.0 L/min and Vhot = 1.2 L/min, an optimum cycle time of 14 minutes was found. The corresponding maximum SCP value is 146.1 W/kg-silica gel and the COP value is 0.54. At this operating condition, the system cooling power is 538 W; at Vcw = 1.5 L/min and Vhot = 1.9 L/min, the optimum cycle time was also found to be 14 minutes. The maximum SCP value is 124.7 W/kg-silica gel and the COP value is 0.41. The system cooling power is 459 W. Comparing these data with the result obtained in an earilier work, the SCP value and COP value were increased 54% and 74.2% respectively.
此研究主要之目的在於對本實驗室內一個具四床之吸附式熱泵進行系統改良,以一種普通密度型矽膠與水作為吸附劑/冷媒之工作配對,設定兩組不同之條件而進行實驗量測,以獲得系統之冷卻能力(SCP)與性能係數(COP)。研究中系統改良之項目包括下列四項: ()冷媒循環泵浦更換成直流電源之泵浦,以控制輪葉之轉速 ()於冷凝器與蒸發器間加裝一支透明玻璃之U型管,以觀察管內冷媒(水)之流動狀態()製作一個不鏽鋼材質之多層金屬網除霧器,以防止霧狀小水滴直接由蒸發器飛入吸附器()調整蒸發器內冷媒噴頭之方向,使冷媒能直接噴灑至冷卻盤管之表面。實驗之結果顯示,當再生溫度 (TG ) 皆設定為 78oC ,在 Vcw = 2.0 L/min、 Vhot = 1.2 L/min之操作條件下,所得系統之最佳週期操作時間為14分鐘,其最大之SCP值為146.1 W/kg-silica gel,所對應之COP值為0.54,系統約產生538 W之冷凍量;在 Vcw = 1.5 L/min、 Vhot = 1.9 L/min之操作條件下,所得系統之最佳週期操作時間亦為14分鐘,其最大之SCP值為124.7 W/kg-silica gel,所對應之COP值為0.41,而系統約產生459 W之冷凍量。經由上述綜合改良後之熱泵系統,其性能與先前本實驗室蔡阜剛[24]所做之研究相比,系統最大之SCP值有54%之提升,而所對應之COP則增加74.2%。
URI: http://hdl.handle.net/11455/91436
文章公開時間: 2018-07-15
Appears in Collections:機械工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.