Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91459
標題: LED燈照射培養北蟲草菌生產二次代謝產物及其動力學之探討
Study on secondary metabolites production by Cordycep militaris in the submerged culture under LED illumination and kinetic modeling
作者: Chung-Hua Kho
許俊華
關鍵字: Cordyceps militaris
submerged culture
exopolysaccharide
LED
kinetic modeling
北蟲草
液態培養
胞外多醣
發光二極體
動力學
引用: 1. 杜巍, 李元瑞, 袁靜. 食藥用菌多醣生物活性與結構關係. 中國藥學, 2002. 21: p. 32-34. 2. 賴進此. 菇類機能性成分的分離與純化. 食品工業, 2002. 5: p. 36-48. 3. Lu, W.J., Tang, Y.F., Gao, R.D. Determination of adenosine and cordycepin in Cordyceps militaris and common edible fungi by HPLC. Drugs & Clinic, 2011. 26(4): p. 313-315. 4. Yu, B.C., Tang, Y.F., Tang, L., Cui, X.M. Advances in study on pharmacological effects of cordycepin. Drugs & Clinic, 2011. 26(5): p. 349-352. 5. Russell, R., Paterson, M. Cordyceps: A traditional Chinese medicine and another fungal therapeutic biofactory? Phytochemistry, 2008. 69(7): p. 1469-95. 6. 林桂英, 不同冬蟲夏草菌株發酵產程中機能性指標成分之探討. 2001: 大葉大學食品工程研究所碩士論文. 7. 王國棟, 冬蟲夏草類生態、培植、應用. 1996: 科學文獻出版社. 8. 許瑞祥. 現代科技發展中的冬蟲夏草. 食品資訊, 1999. 161: p. 23-25. 9. 徐泰浩, 曾耀銘. 利用發酵技術開發機能性食品-冬蟲夏草. 科學發展月刊, 1992. 20(4): p. 388-392. 10. 呂昀陞. 蛹蟲草之特性與栽培現況. 農業試驗所技術服務, 2009. 78: p. 10-12. 11. Das, S.K., Masuda, M., Sakurai, A., Sakakibara, M. Medicinal uses of the mushroom Cordyceps militaris: current state and prospects. Fitoterapia, 2010. 81(8): p. 961-8. 12. Fan, D.D., Wang, W., Zhong, J.J. Enhancement of cordycepin production in submerged cultures of Cordyceps militaris by addition of ferrous sulfate. Biochemical Engineering Journal, 2012. 60(0): p. 30-35. 13. Reis, F.S., Barros, L., Calhelha, R.C., Ciric, A., Van Griensven, L.J., Sokovic, M., Ferreira, I.C. The methanolic extract of Cordyceps militaris (L.) Link fruiting body shows antioxidant, antibacterial, antifungal and antihuman tumor cell lines properties. Food and Chemical Toxicology, 2013. 62: p. 91-98. 14. 范衛強, 尹鴻萍, 周長林. 蟲草多醣的分離、純化和初步藥效活性研究. Chinese Journal of Bioprocess Engineering, 2008. 6: p. 69-73. 15. Shih, I.L., Tsai, K.L., Hsieh, C.Y. Effects of culture conditions on the mycelial growth and bioactive metabolite production in submerged culture of Cordyceps militaris. Biochemical Engineering Journal, 2007. 33(3): p. 193-201. 16. Yi, Z.L., Huang, W.F., Yan, R., Eugen, O., Zhou, G.F., Peng, S., Wang, X.J., Li, H.H. LED lights increase bioactive substances at low energy costs in culturing fruiting bodies of Cordyceps militaris. Scientia Horticulturae, 2014. 175: p. 139-143. 17. 余伯成, 唐永范, 唐亮, 崔星明. 蟲草素的藥理作用研究進展. 現代藥物與臨床, 2011. 26(5): p. 349-352. 18. Chou, C.H., Tzeng, Y.M. A Study on Solid-state Cultivation of Cordyceps militaris. Thesis for the Degree of Master, 2005: p. 62-76. 19. Ni, H., Zhou, X.H., Li, H.H., Huang, W.F. Column chromatographic extraction and preparation of cordycepin from Cordyceps militaris waster medium. J Chromatogr B Analyt Technol Biomed Life Sci, 2009. 877(22): p. 2135-41. 20. 水野卓, 川和正允. 菇類的化學、生化學. 1997: p. 38. 21. Miyazaki, T., Oikawa, N., Yamada, H., Yadomae, T. Structural examination of antitumour, water-soluble glucans from Grifora umbellata by use of four type of glucanase. 1978. 65: p. 235-241. 22. Stajić, M., Vukojević, J., Duletić Lausević, S. Biology of Pleurotus eryngii and role in biotechnological processes: a review. Critical Reviews in Biotechnology, 2009. 29(1): p. 55-66. 23. Hikino, H., Konno, C., Mirin, Y., Hayashi, T. Isolation and Hypoglycemic Activity of Ganoderans A and B, Glycans of Ganoderma lucidum Fruit Bodies. Planta Medica, 1985. 51(4): p. 339-340. 24. Kim, D.H., Yang, B.K., Jeong, S.C., Park, J.B., Cho, S.P., Das, S.K., Yun, J.W., Song, C.H. Production of a hypoglycemic, extracellular polysaccharide from the submerged culture of the mushroom, Phellinus linteus. Biotechnology letters, 2001 23(7): p. 513-517. 25. Pirog, T.P., Malashenko, Y.R., Votselko, S.K. A two-stage cultivation technique for producing microbial exopolysaccharide ethapolan with improve rheological properties. Applied Biochemistry and Microbiology, 2001. 37(4): p. 368-373. 26. Sone, Y., Kakuta, M., Misaki, A. Isolation and characterization of polysaccharides of 'Kikurage', fruit body of Auricularia auricula-judae. Agricultural and Biological Chemistry, 1978. 42(2): p. 417-425. 27. Ukai, S., Kiho, T., Hara, C., Kuruma, I., Tanaka, Y. Polysaccharides in fungi. XIV. Anti-inflammatory effect of the polysaccharides from the fruit bodies of several fungi. Journal of pharmacobio-dynamics, 1983. 6(12): p. 983-990. 28. Hetland, G., Ohno, N., Aaberge, I.S., Lovik, M. Protective effect of β‐glucan against systemic Streptococcus pneumoniae infection in mice. FEMS immunology and medical microbiology, 2000. 27(2): p. 111-116. 29. Kim, H.S., Sam, K., Lee, B.M. In vitro chemopreventive effects of plant polysaccharides (Aloe barbadensis Miller, Lentinus edodes, Ganoderma lucidum and Coriolus versicolor). Carcinogenesis, 1999. 20(8): p. 1637-1640. 30. Zhang, G.L., Wang, Y.H., Ni, W., Teng, H.L., Lin, Z.B. Hepatoprotective role of Ganoderma lucidum polysaccharide against BCG-induced immune liver injury in mice. World Journal of Gastroenterology, 2002. 8(4): p. 728-733. 31. 林安秋. 作物之光合作用. 1984: 台灣商務印書館. 5-6,25,92-95,141-148. 32. Miyashita, Y., Kitaya, Y., Kozai, T. Effects of red and far-red light on the growth and morphology plantlets in vitro : using light emitting diode as a light source for micropropagation. Acta Horticulturae, 1995. 393: p. 189-194. 33. Hoenecke, M.E., Bula, R.J., Tibbits, T.W. Importance of “Blue” photon levels for lettuce seedlings grown under red- light-emitting diodes. Hortscience, 1992. 27(5): p. 427-430. 34. Brown, C.S., Schuerger, A.C., Sager, J.C. Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting. Journal of the American Society for Horticultural Science, 1995. 120(5): p. 808-813. 35. Schuerger, A.C., Brown, C.S., Stryjewski, E.C. Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light. Annals of Botany, 1997. 79(3): p. 273-282. 36. Anne, B., Kay, V., Ronja, T., Janina, P., Daniel, V., Nicole, F.D., Reinhard, F. The Aspergillus nidulans phytochrome fpha represses sexual development in the red light. 2005. 15: p. 1833-1838. 37. Purschwitz, J., Müller, S., Kastner, C., Fischer, R. Seeing the rainbow: light sensing in fungi. 2006. 9: p. 566-571. 38. Kawagoshi, Y., Oki, Y., Nakano, I., Fujimoto, A., Takahashi, H. Biohydrogen production by isolated halotolerant photosynthetic bacteria using long-wavelength light-emitting diode (LW-LED). International Journal of Hydrogen Energy, 2010. 35(24): p. 13365-13369. 39. Hamanaka, D., Uchino, T., Furuse, N., Han, W., Tanaka, S.I. Effect of the wavelength of infrared heaters on the inactivation of bacterial spores at various water activities. International Journal of Food Microbiology, 2006. 108(2): p. 281-285. 40. Beltran de Heredia, J., Torregrosa, J., Dominguez, J.R., Partido, E. Degradation of wine distillerywastewaters by the combination of aerobic biological treatment with chemical oxidation by Fenton''s reagent. Water Sci. Technol., 2005. 5: p. 167-174. 41. Othmane, B., Salah, H., Fatiha, B. Batch kinetics and modelling of Pleuromutilin production by Pleurotus mutilis. Biochemical Engineering Journal, 2007. 36: p. 14-18. 42. Dubois, M., Gilles, K.A., Revers, A.P., Smith, F. Calorimetric method for determination of sugars and related substance. 1956. 28: p. 350-356. 43. 黃仕政, 蔡淑瑤, 毛正倫. 蛹蟲草子實體及菌絲體之培養和其生理活性成分. 中州學報, 2009年6月. 第二十七期: p. 205-222. 44. Danesi, E.D.G., Rangel Yagui, C.O., Carvalho, J.C.M., Sato, S. Effect of reducing the light intensity on the growth and production of chlorophyll by Spirulina platensis. 2004. 26(4): p. 329-335. 45. Borkovich, K.A., Alex, L.A., Yarden, O., Freitag, M., Turner, G.E., Read, N.D., Seiler, S., Bell Pedersen, D., Paietta, J., Plesofsky, N., Plamann, M., Goodrich Tanrikulu, M., Schulte, U., Mannhaupt, G., Nargang, F.E., Radford, A., Selitrennikoff, C., Galagan, J.E., Dunlap, J.C., Loros, J.J., Catcheside, D., Inoue, H., Aramayo, R., Polymenis, M., Selker, E.U., Sachs, M.S., Marzluf, G.A., Paulsen, I., Davis, R., Ebbole, D.J., Zelter, A., Kalkman, E.R., O''Rourke, R., Bowring, F., Yeadon, J., Ishii, C., Suzuki, K., Sakai, W., Pratt, R. Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. 2004: p. 1-108. 46. 李欣樺, 洪進雄, 薛智升, 甘祥佑, 謝易甍. 低溫及 LED 光質處理對阿魏菇 (Pleurotus eryngii var. ferulae) 原基誘導之影響. Fung. Sci., 2008. 23: p. 1-10. 47. Dong, J.Z., Wang, S.H., Ai, X.R., Yao, L., Sun, Z.W., Lei, C., Wang, Y., Wang, Q. Composition and characterization of cordyxanthins from Cordyceps militaris fruit bodies. Journal of Functional Foods, 2013. 5(3): p. 1450-1455. 48. Shu, C.H., Peng, J.C., Tsai, C.C. Effects of light intensity and light wavelength on the production of mycophenolic acid by Penicillium brevicompactum in batch cultures. Enzyme and Microbial Technology, 2010. 46(6): p. 466-471. 49. Argun, H., Kargi, F. Effects of light source, intensity and lighting regime on bio-hydrogen production from ground wheat starch by combined dark and photo-fermentations. International Journal of Hydrogen Energy, 2010. 35(4): p. 1604-1612. 50. Cheng, C.W., Chen, C.K., Chang, C.J., Chen, L.Y. Effect of colour LEDs on mycelia growth of Aspergillus ficuum and phytase production in photo-fermentations. J Photochem Photobiol B, 2012. 106: p. 81-6. 51. Zhou, Q., Zhang, P., Zhang, G. Biomass and carotenoid production in photosynthetic bacteria wastewater treatment: effects of light intensity. Bioresour Technol, 2014. 171: p. 330-5. 52. Jiao, Y., Chen, Q.H., Zhou, J.S., Zhang, H.F., Chen, H.Y. Improvement of exo-polysaccharides production and modeling kinetics by Armillaria luteo-virens Sacc. in submerged cultivation. LWT-Food Science and Technology, 2008. 41: p. 1694-1700.
摘要: 菇類具有許多生物活性,如抗腫瘤、免疫調節、降血壓、降血糖、降膽固醇、抗細菌及病毒、延緩骨質疏鬆等保健功效。北蟲草為一種食藥用菇菌,含有許多生物活性物質,如腺苷、蟲草素、多醣體、蛋白多醣、核酸等,同時富含高營養價值。應用液態醱酵培養菇類,生產菌絲體及代謝產物具有培養週期短、品質較穩定、易於商業化大規模生產等優點。因此,以液態培養方式進行北蟲草菌絲體及生物活性物質生產是極值得被研究探討之題材。 本論文主要以北蟲草菌Cordyceps militaris應用液態發酵培養配合LED燈照射,對菌絲體生長及代謝產物胞外多醣體(EPS)及蟲草素生產之探討。結果顯示,以光強度為1.0μmole/sec-m2綠光照射培養,為生產菌絲體及胞外多醣之最佳光源,最大產量分別為21.05 g/L及2535.24 mg/L;光強度為1.0 μmole/sec-m2白光照射培養,為生產蟲草素之最佳光源,最大產量為170 mg/L. 以動力學模型模擬不同光波長LED燈照射培養對菌絲體及胞外多醣體生產之模式,以求出最適波長光源,同時比較實驗結果及模擬結果之差異。模擬結果顯示,菌絲體生產以紅光為最適,其比生長速率為3.780 day-1;胞外多醣生產以綠光為最適,其理論比產率可達604.30 mg g-1。
Mushroom contains many biologically active compounds, claimed to possess anti-tumor, immune regulation, anti-bacteria and anti-viruses activities long with many other health effects. Cordyceps militaris was reported to contain a lot of bio-active components such as adenosine, cordycepin, exo-polysaccharides, protein polysaccharides and nucleic acids. The application of the submerged culture of mushroom was expected to reduce cultivation time, stabilize product quality, and realize the scale-up process. In this study, different intensity and wavelength LED lights were used in C. militaris culture. The green LED with intensity 1.0 μmole/sec-m2 was found to be the most helpful for mycelial biomass growth and exo-polysaccharides (EPS) productions. The maximum biomass and EPS production were 21.05 g/L and 2535.24 mg/L, respectively. In the other hand, white LED with intensity 1.0 μmole/sec-m2 was found to be the most helpful for cordycepin production. The maximum production of cordycepin can reach 170 mg/L. In order to study the kinetic of C. militaris mycelial biomass and EPS production under different LED lights, the experimental data were used to simulate the kinetic model. The simulation result indicated that, red LED was the best light source for mycelial growth with the specific growth rate of 3.780 day-1. In contrast, the green light is the most suitable light source for EPS production with the specific productivity of 604.30 mg g-1. The modeling results were consistent to the experimental result.
URI: http://hdl.handle.net/11455/91459
其他識別: U0005-1707201518150100
文章公開時間: 2018-07-28
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.