Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91461
標題: 石墨烯/全氟磺酸聚合物/辣根過氧化酶酵素奈米複合薄膜作為生物感測器之探討
Biosensor based on graphene/nafion/horseradish peroxidase nanocomposite films
作者: Siao-Yuan Huang
黃孝源
關鍵字: no
引用: S. Stankovich, D. A. Dikin, G. H. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, et al., 'Graphene-based composite materials,' Nature, vol. 442, pp. 282-286, 2006. M. Zhou, Y. Zhai, and S. Dong, 'Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide,' Analytical Chemistry, vol. 81, pp. 5603-5613, 2009. C. Mousty, 'Sensors and biosensors based on clay-modified electrodes—new trends,' Applied Clay Science, vol. 27, pp. 159-177, 12// 2004. 劉英俊, 酵素工程: 中央圖書出版社, 1987. 許嘉伊, 全球特用酵素市場分析. 台灣經濟研究院生物科技產業中心, 2007. 洪爭坊、郭肇凱、張正英, 淺談酵素. 台中區農情月刊. Barcelo, D. and M. Hennion, Techniques and instrumentation in analytical chemistry. Techniques and instrumentation in analytical chemistry, 1997. 19. 左国防, '辣根过氧化物酶直接电化学研究进展,' 天水師範學院學報, vol. 27, pp. 21-25, 2007. Horseradish peroxidase,wikipedia 維基百科。 http://www.chem.uci.edu/~pfarmer/127i/h2o2act.html R. A. Messing, Academic Press, New York,pl,1975 Krajewska, B., Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme and Microbial Technology, 2004. 35(2–3): p. 126-139. Tischer, W. and F. Wedekind, Immobilized Enzymes: Methods and Applications, in Biocatalysis - From Discovery to Application, W.-D. Fessner, et al., Editors. 1999, Springer Berlin Heidelberg. p. 95-126. Gamati, S., J.H.T. Luong, and A. Mulchandani, A microbial biosensor for trimethylamine using Pseudomonas aminovorans cells. Biosensors and Bioelectronics, 1991. 6(2): p. 125-131. Jones, T.P. and M.D. Porter, Optical pH sensor based on the chemical modification of a porous polymer film. Analytical Chemistry, 1988. 60(5): p.404-406. Zhujun, Z. and W.R. Seitz, Optical sensor for oxygen based on immobilized hemoglobin. Analytical Chemistry, 1986. 58(1): p. 220-222. F.T. Richard, S.S. Jerome, Handbook of Chemical and Biological Sensors, p5. Gill, I. and A. Ballesteros, Encapsulation of Biologicals within Silicate,Siloxane, and Hybrid Sol−Gel Polymers: An Efficient and Generic Approach. Journal of the American Chemical Society, 1998. 120(34): p. 8587-8598. J.M.S. Cabral, J.F. Kennedy, R. F. Taylor(New York; Dekker), 73,1991. Cabral, J. and J. Kennedy, Covalent and coordination immobilization of proteins. Bioprocess technology, 1991. 14: p. 73. Salimi, A., R.G. Compton, and R. Hallaj, Glucose biosensor prepared by glucose oxidase encapsulated sol-gel and carbon-nanotube-modified basal plane pyrolytic graphite electrode. Analytical Biochemistry, 2004. 333(1): p.49-56. J. Li, L.S. Chia, N.K. Goh, S.N. Tan, J. Electroanal. Chem.,234,1999. Yu, J., S. Liu, and H. Ju, Glucose sensor for flow injection analysis of serum glucose based on immobilization of glucose oxidase in titania sol–gel membrane. Biosensors and Bioelectronics, 2003. 19(4): p. 401-409. J. Parellada, A. Narvaez, Biosens. Bioelectron., 12, 267, 1997. Serban, S. and N. El Murr, Use of Ferricinium Exchanged Zeolite for Mediator Stabilization and Analytical Performances Enhancement of Oxidase-Based Carbon Paste Biosensors. Analytical Letters, 2003. 36(9): p.1739-1753. Parellada, J., et al., A new type of hydrophilic carbon paste electrodes for biosensor manufacturing: binder paste electrodes. Biosensors and Bioelectronics, 1997. 12(4): p. 267-275. Tsai, Y.C., S.C. Li, and S.W. Liao, Electrodeposition of polypyrrole-multiwalled carbon nanotube-glucose oxidase nanobiocomposite film for the detection of glucose. Biosensors & bioelectronics, 2006. 22(4): p.495-500. Vidal, J.C., E. Garcı́ a, and J.R. Castillo, In situ preparation of overoxidized PPy/oPPD bilayer biosensors for the determination of glucose and cholesterol in serum. Sensors and Actuators B: Chemical, 1999. 57(1–3): p. 219-226. G.T. Constantinos, B.F. Ageliki, N.T. Pantelis, Electro. Commu., 7, 781, 2005. Tsai, Y.-C., J.-D. Huang, and C.-C. Chiu, Amperometric ethanol biosensor based on poly(vinyl alcohol)–multiwalled carbon nanotube–alcohol dehydrogenase biocomposite. Biosensors and Bioelectronics, 2007. 22(12): p. 3051-3056. Li, Y. and X. Lin, Simultaneous electroanalysis of dopamine, ascorbic acid and uric acid by poly (vinyl alcohol) covalently modified glassy carbon electrode.Sensors and Actuators B: Chemical, 2006. 115(1): p. 134-139. Shen, J., L. Dudik, and C.-C. Liu, An iridium nanoparticles dispersed carbon based thick film electrochemical biosensor and its application for a single use, disposable glucose biosensor. Sensors and Actuators B: Chemical, 2007. 125(1): p. 106-113. G. Kefala, A. Econmou, A. Voulgaropoulos, Analyst, 129, 1082, 2004. K. Crowley, J. Cassidy, Electroanalysis, 14, 1077, 2001. Tsai, Y.-C., J.-M. Chen, and F. Marken, Simple Cast-Deposited Multi-Walled Carbon Nanotube/Nafion™ Thin Film Electrodes for Electrochemical Stripping Analysis. Microchimica Acta, 2005. 150(3-4): p. 269-276. Tsai, Y.-C., S.-C. Li, and J.-M. Chen, Cast thin film biosensor design based on a nafion backbone, a multiwalled carbon nanotube conduit, and a glucose oxidase function. Langmuir, 2005. 21(8): p. 3653-3658. Wu, W.-C., H.-W. Chang, and Y.-C. Tsai, Electrocatalytic detection of dopamine in the presence of ascorbic acid and uric acid at silicon carbide coated electrodes. Chemical Communications, 2011. 47(22): p. 6458-6460. Moore, C.M., et al., Improving the Environment for Immobilized Dehydrogenase Enzymes by Modifying Nafion with Tetraalkylammonium Bromides. Biomacromolecules, 2004. 5(4): p. 1241-1247. Tsai, Y.-C., J.-M. Chen, and F. Marken, Simple Cast-Deposited Multi-Walled Carbon Nanotube/Nafion™ Thin Film Electrodes for Electrochemical Stripping Analysis. Microchimica Acta, 2005. 150(3-4): p. 269-276. Novoselov, K.S., et al., Electric Field Effect in Atomically Thin Carbon Films.Science, 2004. 306(5696): p. 666-669. A. K. Geim and K. S. Novoselov, 'The rise of graphene,' Nat Mater, vol. 6, pp.183-191, 03//print 2007. M. Pumera, A. Ambrosi, A. Bonanni, E. L. K. Chng, and H. L. Poh, 'Graphene for electrochemical sensing and biosensing,' TrAC Trends in Analytical Chemistry, vol. 29, pp. 954-965, 10// 2010. Wu, J.-F., M.-Q. Xu, and G.-C. Zhao, Graphene-based modified electrode for the direct electron transfer of Cytochrome c and biosensing. Electrochemistry Communications, 2010. 12(1): p. 175-177. Guo, S., et al., Platinum Nanoparticle Ensemble-on-Graphene Hybrid Nanosheet: One-Pot, Rapid Synthesis, and Used as New Electrode Material for Electrochemical Sensing. ACS Nano, 2010. 4(7): p. 3959-3968. Sigma Chemical Co., Material Safety Data Sheet (2000), Hydrogen peroxide 30 wt.% in water. Windhol M, ed. (1995) The Merck Index, 12th Ed. New York: Merck and Co. Inc. Hydrogen peroxide,Wikipedia 維基百科。 梁秀美, 市面上血糖機之比較. 中華民國糖尿病衛教學會, 2012. Glucose,Wikipedia 維基百科。 Ascorbic acid,Wikipedia 維基百科。 http://cht.a-hospital.com/w/%E5%B0%BF%E9%85%B8 Uric acid,Wikipedia 維基百科。 A.J. Bard, I.R. Faulkner, Electrochemical Methods: Fundaments and Applications, Wily, New York, 2000. D.R. Crow, Principle and Applications of Electrochemistry,高立,1998。 M. Umana, J. Waller, Anal. Chem., 58, 2979, 1986. M.C. Shin, H.S. Kim, Biosens. Bioelectron., 11, 171, 1996
摘要: 本研究成功將石墨烯/全氟磺酸聚合物/辣根過氧化酶酵素奈米複合薄膜修飾於玻璃碳電極上製備出生物感測器;透過原子力顯微鏡來觀察石墨烯/全氟磺酸聚合物/辣根過氧化酶酵素奈米複合薄膜分散的情形,並利用循環伏安法和安培法來作偵測。 利用循環伏安法在0.1M的磷酸緩衝溶液(pH7)的掃描下來觀察石墨烯/全氟磺酸聚合物/辣根過氧化酶酵素奈米複合薄膜之電化學反應,並由不同掃描速率實驗證實此奈米複合薄膜為表面控制反應;再利用安培法來觀察石墨烯/全氟磺酸聚合物/辣根過氧化酶酵素奈米複合薄膜來偵測過氧化氫之濃度,能得到的靈敏度7.17x10-4(A/M-1cm2),偵測極限15.63mM,線性範圍為30-120mM。 從干擾物的實驗中可證實此生物感測器已成功的避免敗壞血酸,尿酸,葡萄糖的干擾,還有此奈米複合薄膜可用來對過氧化氫作專一性的偵測。
This study successfully graphene/nafion/horseradish peroxidase nanocomposite film modified on glassy carbon electrode to prepared biosensor. By atomic force microscopy to observe the graphene / nafion/ horseradish peroxidase nanocomposite films is dispersed situations to cyclic voltammetry and amperometric detection.By cyclic voltammetry in 0.1M phosphate buffer solution (pH 7) to scan can observe the graphene / nafion/ horseradish peroxidase nanocomposite films of electrochemical reaction and in this experiments by different scan rates that confirmed this nanocomposite films is surface-controlled reactions.Reused amperometric observe the graphene / nafion/ horseradish peroxidase nanocomposite films nanocomposite films to detect the concentration of hydrogen peroxide, can get a sensitivity of 7.17x10-4(A/M-1cm2), detection limit of 15.63mM, the linear range of 30-120mM. From the experiments confirm this biosensor have been successfully to avoid interference of ascorbic acid 、 uric acid 、 glucose,and this nanocomposite films can be used to make specifically detection of hydrogen peroxide.
URI: http://hdl.handle.net/11455/91461
其他識別: U0005-1104201514420300
文章公開時間: 2018-05-11
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.