Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91462
標題: 石墨烯/葡萄糖氧化酵素/全氟磺酸聚合物奈米複合薄膜作為生物感測器之探討
Biosensors based on graphene/glucose oxidase/nafion nanocompsite films
作者: Hou-Kuan Li
李侯寬
關鍵字: No
引用: [1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science, 306 (2004) 666-669. [2] A. Satti, P. Larpent, Y. Gun’ko, Carbon, 48 (2010) 3376-3381. [3] http://en.wikipedia.org/wiki/Glucose#cite_note-3. [4] 許清曉,常用臨床檢驗手冊,藝軒圖書,(2001)。 [5] http://www.who.int/mediacentre/factsheets/fs312/zh/index.html. [6] 糖尿病關懷基金會,糖尿病迷思解惑 Q & A,健康文化發行,(2007)。 [7] Chinese Journal of Spectroscopy Laboratory,第 20 卷,第四期 [8] H. Qiu, X. Huang, Journal of Electroanalytical Chemistry, 643 (2010) 39-45. [9] H. Wu, J. Wang, X. Kang, C. Wang, D. Wang, J. Liu, I.A. Aksay, Y. Lin, Talanta, 80 (2009) 403-406. [10] T. Kong, Y. Chen, Y. Ye, K. Zhang, Z. Wang, X. Wang, Sensors and Actuators B: Chemical, 138 (2009) 344-350. [11] C. Cai, J. Chen, Analytical biochemistry, 332 (2004) 75-83. [12] T.-H. Yang, C.-L. Hung, J.-H. Ke, J.-M. Zen, Electrochemistry Communications, 10 (2008) 1094-1097. [13] 食品與藥品 Food and Drug 第 12 卷,第 07 期 [14] Z. Yang, Y. Ren, Y. Zhang, J. Li, H. Li, X.H. Hu, Q. Xu, Biosensors & bioelectronics, 26 (2011) 4337-4341. [15] Berezin, I. V.; Varfolomeev, S. D. Appl. Biochem. Bioeng. 1978, 2, 259-290. [16] Tarasevich, M. R.; Yaropolov, A. I. Bioelectrochem. Bioenergetics 1979, 6, 393- 403. [17] Varfolomeev, S. D.; Kurochkin, I. N. Biosen. Bioelectron. 1994, 9, 353-357. [18] W. Sun, Z. Zhai, K. Jiao, Analytical Letters, 41 (2008) 2819-2831. [19] H.C. Cheng, M. Abo, A. Okubo, Analyst, 128, 724, 2003. [20] S. Sasaki, Y. Iida, Colloids and surfaces. B, Biointerfaces, 71 (2009) 124-127. [21] J. Wu, Y. Qu, Analytical and bioanalytical chemistry, 385 (2006) 1330-1335. [22] X. Zhao, Z. Mai, X. Kang, X. Zou, Biosensors & bioelectronics, 23 (2008) 1032- 1038. [23] W.Y. Cai, Q. Xu, X.N. Zhao, J.J. Zhu, H.Y. Chen, Chem. Mater, 18, 278, 2006 [24] Y. Xu, W. Peng, X. Liu, G. Li, Biosensors & bioelectronics, 20 (2004) 533-537. [25] Chen, T.; Binyamin, G.; Heller, A. Anal. Sci. 2001, 17, supplement. [26] M. Li, S. Xu, M. Tang, L. Liu, F. Gao, Y. Wang, Electrochimica Acta, 56 (2011) 1144-1149. [27] J.-L. Huang, Y.-C. Tsai, Sensors and Actuators B: Chemical, 140 (2009) 267-272. [28] L. Zhang, H. Cheng, H.-m. Zhang, L. Qu, Electrochimica Acta, 65 (2012) 122-126. [29] W.-C. Wu, J.-L. Huang, Y.-C. Tsai, Materials Science and Engineering: C, 32 (2012) 983-987. [30] Z. Yang, Y. Ren, Y. Zhang, J. Li, H. Li, X.H. Hu, Q. Xu, Biosensors & bioelectronics, 26 (2011) 4337-4341. [31] Y. Liu, M. Wang, F. Zhao, Z. Xu, S. Dong, Biosensors & bioelectronics, 21 (2005) 984-988. [32] 奈米通訊 NANO COMMUNICATION 20 卷 No. 3 [33] Geim, Andre K., and Konstantin S. Novoselov. 'The rise of graphene.' Nature materials 6.3 (2007): 183-191. [34] Novoselov, Kostya S., et al. 'Electric field effect in atomically thin carbon films.' science 306.5696 (2004): 666-669. [35] MANCHESTER, ITYOF. 'Carbon Sheets an Atom Thick Give Rise to Graphene Dreams.' [36] L.A. Ponomarenko, F. Schedin, M.I. Katsnelson, R. Yang, E.W. Hill, K.S. Novoselov, A.K. Geim, Science, 320 (2008) 356-358. [37] X.-Y. Yuan, Journal of Inorganic Materials, 26 (2011) 561-570. [38] S.K. Srivastava, A.K. Shukla, V.D. Vankar, V. Kumar, Thin Solid Films, 492 (2005) 124-130. [39]綠色/永續化學通訊 第 6 卷,第 2 期 [40] K.P. Loh, Q. Bao, G. Eda, M. Chhowalla, Nature chemistry, 2 (2010) 1015-1024. [41] Kovtyukhova, Nina I., et al. 'Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations.' Chemistry of Materials 11.3 (1999): 771-778. [42] G. Eda, G. Fanchini, M. Chhowalla, Nature nanotechnology, 3 (2008) 270-274. [43] Fernandez-Merino, M. J., et al. 'Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions.' The Journal of Physical Chemistry C 114.14 (2010): 6426-6432. [44] J. Gao, F. Liu, Y. Liu, N. Ma, Z. Wang, X. Zhang, Chemistry of Materials, 22 (2010) 2213-2218. [45] Radu, Daniela R., et al. 'Gatekeeping layer effect: a poly (lactic acid)-coated mesoporous silica nanosphere-based fluorescence probe for detection of amino- containing neurotransmitters.' Journal of the American Chemical Society 126.6 (2004): 1640-1641. [46] W. Wu, Z. Liu, L.A. Jauregui, Q. Yu, R. Pillai, H. Cao, J. Bao, Y.P. Chen, S.-S. Pei, Sensors and Actuators B: Chemical, 150 (2010) 296-300. [47] Ohno, Yasuhide, et al. 'Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption.' Nano Letters 9.9 (2009): 3318-3322. [48] Hoyer, Boy, T. Mark Florence, and Graeme E. Batley. 'Application of polymer- coated glassy carbon electrodes in anodic stripping voltammetry.' Analytical chemistry 59.13 (1987): 1608-1614. [49] Harrison, D. Jed, Robin FB Turner, and H. P. Baltes. 'Characterization of perfluorosulfonic acid polymer coated enzyme electrodes and a miniaturized integrated potentiostat for glucose analysis in whole blood.' Analytical Chemistry 60.19 (1988): 2002-2007. [50] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd Edition, WILEY, 2000. [51] 呂慧菁,電化學葡萄糖感測試片之研發,國立中興大學化學研究所碩士論 文,(2003)。 [52] Instruments, E. G. G. 'Princeton Applied Research.' PO Box 2565. [53] W.S. Hummers Jr, R.E. Offeman, J. Am. Chem. Soc., 80 (1958) 1339-1339. [54] J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo, Chemical communications, 46 (2010) 1112-1114. [55] K. Zhou, Y. Zhu, X. Yang, C. Li, Electroanalysis, 23 (2011) 862-869. [56] Y. Oztekin, A. Ramanaviciene, Z. Yazicigil, A.O. Solak, A. Ramanavicius, Biosensors & bioelectronics, 26 (2011) 2541-2546. [57] L. E, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 101 (1979) 19-28. [58] X. Kang, J. Wang, H. Wu, I.A. Aksay, J. Liu, Y. Lin, Biosensors & bioelectronics, 25 (2009) 901-905. [59] P. Wu, Q. Shao, Y. Hu, J. Jin, Y. Yin, H. Zhang, C. Cai, Electrochimica Acta, 55 (2010) 8606-8614. [60] B. Unnikrishnan, S. Palanisamy, S.M. Chen, Biosensors & bioelectronics, 39 (2013) 70-75. [61] K. Wang, H. Yang, L. Zhu, Z. Ma, S. Xing, Q. Lv, J. Liao, C. Liu, W. Xing, Electrochimica Acta, 54 (2009) 4626-4630. [62] A. Salimi, R.G. Compton, R. Hallaj, Analytical biochemistry, 333 (2004) 49-56. [63] M. Zhou, L. Shang, B. Li, L. Huang, S. Dong, Biosensors & bioelectronics, 24 (2008) 442-447. [64] C. Fu, W. Yang, X. Chen, D.G. Evans, Electrochemistry Communications, 11 (2009) 997-1000. [65] Vidal, Juan-Carlos, et al. 'Three approaches to the development of selective bilayer amperometric biosensors for glucose by in situ electropolymerization.' Analyst 124.3 (1999): 319-324.
摘要: 本論文成功的利用簡單且快速的方法來製備以石墨烯(RGO)為主要材料之感測器。本論文分成二部份,第一部分主要探討以改良後的 Hummers method 製備出氧化石墨烯(GO),利用原子力顯微鏡觀察其表面形貌。再以抗壞血酸將氧化石墨烯(GO)還原成石墨烯(RGO),再以 UV-Vis 光譜儀、傅立葉轉換紅外光光譜儀、X-光繞射分析儀、拉曼光譜儀及電化學方法觀察氧化石墨烯(GO)是否成功還原,發現石墨烯(RGO)有大量的含氧官能基被移除了,使得石墨烯(RGO)不易分散於水中,證實利用此方法確實製備出氧化石墨烯(GO)及還原成石墨烯(RGO)。 第二部分主要在探討 GOD (Glucose oxidase)酵素的直接電子傳遞特性與其應用,將 GOD 酵素與 RGO/ Nafion 奈米複合薄膜一起修飾於 GCE 上,利用 AFM 去觀察 GOD 酵素修飾前與修飾後表面微結構的變化 再利用循環伏安法來探討 RGO/。GOD/ Nafion 奈米複合薄膜的電化學性質。由循環伏安法在 0.1M 的磷酸緩衝溶液(pH 7)的掃描之下可以觀察到一對可逆的氧化還原峰出現在-0.421 V 與-0.462 V 的位置,表示 GOD 酵素保持良好的活性在此奈米複合薄膜之中,並由不同掃描速率實驗得知此奈米複合薄膜為表面控制反應(surface-controlled)。經由各個條件最佳化後,利用循環伏安法以 RGO/ GOD/ Nafion 奈米複合薄膜來偵測葡萄糖濃度,所得到的靈敏度為 11.02μA mM-1 cm-2,線性範圍為 0.9-6 mM,R2 為 0.995。由干擾物實驗證實此葡萄糖生物感測器可避免掉敗壞血酸,尿酸之干擾,並成功將 RGO/GOD/ Nafion 奈米複合薄膜用來偵測合成血清中的葡萄糖。
The preparation, characterization, and sensor application of the long- and short-chain graphene oxide (GO) derivatives prepared by the modified Hummers method were investigated in this study, also use AFM research the surface structures. The fabricated GO and reduced graphene oxide (RGO) used as a reinforcing material for conducting polymer were characterized by UV-Vis spectroscopy、FT-IR、XRD、Raman and Electrochemistry method. The RGO removed a large number of oxidation function group by reducing agent will become less hydrophilic and be difficult to disperse in solution. In the next part, RGO was used to prepare a biosensor electrode for the detection of glucose concentrations by direct electrochemistry of glucose oxidase (GOD). The morphology of the RGO/ GOD/ Nafion nanocomposite was characterized by atomic force microscopy. The root-mean-square roughness value of the film surface decreased significantly after GOD was immobilized in the RGO/Nafion nanocomposite film. The electrochemical performance of the RGO/ GOD/ Nafion modified electrode was investigated by cyclic voltammetry. Cyclic voltammetry measurements of the immobilized GOD showed a pair of well-defined and quasi-reversible redox peaks at the RGO-based electrode and provided evidence for a surface-controlled electrode process. Cyclic voltammetry results showed the biosensor to have good sensitivity of 11.02μA mM-1 cm-2 and linear concentration range of 0.9 to 6 mM (R2 = 0.995). The biosensor exhibits good reproducibility and anti-interference properties, and is suitable for application in the determination of glucose in synthetic serum.
URI: http://hdl.handle.net/11455/91462
其他識別: U0005-1805201511033000
文章公開時間: 2018-07-15
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.