Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91462
DC FieldValueLanguage
dc.contributor蔡毓楨zh_TW
dc.contributorYu-Chen Tsaien_US
dc.contributor.authorHou-Kuan Lien_US
dc.contributor.author李侯寬zh_TW
dc.contributor.other化學工程學系所zh_TW
dc.date2014zh_TW
dc.date.accessioned2015-12-11T06:50:55Z-
dc.identifierU0005-1805201511033000zh_TW
dc.identifier.citation[1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science, 306 (2004) 666-669. [2] A. Satti, P. Larpent, Y. Gun’ko, Carbon, 48 (2010) 3376-3381. [3] http://en.wikipedia.org/wiki/Glucose#cite_note-3. [4] 許清曉,常用臨床檢驗手冊,藝軒圖書,(2001)。 [5] http://www.who.int/mediacentre/factsheets/fs312/zh/index.html. [6] 糖尿病關懷基金會,糖尿病迷思解惑 Q & A,健康文化發行,(2007)。 [7] Chinese Journal of Spectroscopy Laboratory,第 20 卷,第四期 [8] H. Qiu, X. Huang, Journal of Electroanalytical Chemistry, 643 (2010) 39-45. [9] H. Wu, J. Wang, X. Kang, C. Wang, D. Wang, J. Liu, I.A. Aksay, Y. Lin, Talanta, 80 (2009) 403-406. [10] T. Kong, Y. Chen, Y. Ye, K. Zhang, Z. Wang, X. Wang, Sensors and Actuators B: Chemical, 138 (2009) 344-350. [11] C. Cai, J. Chen, Analytical biochemistry, 332 (2004) 75-83. [12] T.-H. Yang, C.-L. Hung, J.-H. Ke, J.-M. Zen, Electrochemistry Communications, 10 (2008) 1094-1097. [13] 食品與藥品 Food and Drug 第 12 卷,第 07 期 [14] Z. Yang, Y. Ren, Y. Zhang, J. Li, H. Li, X.H. Hu, Q. Xu, Biosensors & bioelectronics, 26 (2011) 4337-4341. [15] Berezin, I. V.; Varfolomeev, S. D. Appl. Biochem. Bioeng. 1978, 2, 259-290. [16] Tarasevich, M. R.; Yaropolov, A. I. Bioelectrochem. Bioenergetics 1979, 6, 393- 403. [17] Varfolomeev, S. D.; Kurochkin, I. N. Biosen. Bioelectron. 1994, 9, 353-357. [18] W. Sun, Z. Zhai, K. Jiao, Analytical Letters, 41 (2008) 2819-2831. [19] H.C. Cheng, M. Abo, A. Okubo, Analyst, 128, 724, 2003. [20] S. Sasaki, Y. Iida, Colloids and surfaces. B, Biointerfaces, 71 (2009) 124-127. [21] J. Wu, Y. Qu, Analytical and bioanalytical chemistry, 385 (2006) 1330-1335. [22] X. Zhao, Z. Mai, X. Kang, X. Zou, Biosensors & bioelectronics, 23 (2008) 1032- 1038. [23] W.Y. Cai, Q. Xu, X.N. Zhao, J.J. Zhu, H.Y. Chen, Chem. Mater, 18, 278, 2006 [24] Y. Xu, W. Peng, X. Liu, G. Li, Biosensors & bioelectronics, 20 (2004) 533-537. [25] Chen, T.; Binyamin, G.; Heller, A. Anal. Sci. 2001, 17, supplement. [26] M. Li, S. Xu, M. Tang, L. Liu, F. Gao, Y. Wang, Electrochimica Acta, 56 (2011) 1144-1149. [27] J.-L. Huang, Y.-C. Tsai, Sensors and Actuators B: Chemical, 140 (2009) 267-272. [28] L. Zhang, H. Cheng, H.-m. Zhang, L. Qu, Electrochimica Acta, 65 (2012) 122-126. [29] W.-C. Wu, J.-L. Huang, Y.-C. Tsai, Materials Science and Engineering: C, 32 (2012) 983-987. [30] Z. Yang, Y. Ren, Y. Zhang, J. Li, H. Li, X.H. Hu, Q. Xu, Biosensors & bioelectronics, 26 (2011) 4337-4341. [31] Y. Liu, M. Wang, F. Zhao, Z. Xu, S. Dong, Biosensors & bioelectronics, 21 (2005) 984-988. [32] 奈米通訊 NANO COMMUNICATION 20 卷 No. 3 [33] Geim, Andre K., and Konstantin S. Novoselov. 'The rise of graphene.' Nature materials 6.3 (2007): 183-191. [34] Novoselov, Kostya S., et al. 'Electric field effect in atomically thin carbon films.' science 306.5696 (2004): 666-669. [35] MANCHESTER, ITYOF. 'Carbon Sheets an Atom Thick Give Rise to Graphene Dreams.' [36] L.A. Ponomarenko, F. Schedin, M.I. Katsnelson, R. Yang, E.W. Hill, K.S. Novoselov, A.K. Geim, Science, 320 (2008) 356-358. [37] X.-Y. Yuan, Journal of Inorganic Materials, 26 (2011) 561-570. [38] S.K. Srivastava, A.K. Shukla, V.D. Vankar, V. Kumar, Thin Solid Films, 492 (2005) 124-130. [39]綠色/永續化學通訊 第 6 卷,第 2 期 [40] K.P. Loh, Q. Bao, G. Eda, M. Chhowalla, Nature chemistry, 2 (2010) 1015-1024. [41] Kovtyukhova, Nina I., et al. 'Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations.' Chemistry of Materials 11.3 (1999): 771-778. [42] G. Eda, G. Fanchini, M. Chhowalla, Nature nanotechnology, 3 (2008) 270-274. [43] Fernandez-Merino, M. J., et al. 'Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions.' The Journal of Physical Chemistry C 114.14 (2010): 6426-6432. [44] J. Gao, F. Liu, Y. Liu, N. Ma, Z. Wang, X. Zhang, Chemistry of Materials, 22 (2010) 2213-2218. [45] Radu, Daniela R., et al. 'Gatekeeping layer effect: a poly (lactic acid)-coated mesoporous silica nanosphere-based fluorescence probe for detection of amino- containing neurotransmitters.' Journal of the American Chemical Society 126.6 (2004): 1640-1641. [46] W. Wu, Z. Liu, L.A. Jauregui, Q. Yu, R. Pillai, H. Cao, J. Bao, Y.P. Chen, S.-S. Pei, Sensors and Actuators B: Chemical, 150 (2010) 296-300. [47] Ohno, Yasuhide, et al. 'Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption.' Nano Letters 9.9 (2009): 3318-3322. [48] Hoyer, Boy, T. Mark Florence, and Graeme E. Batley. 'Application of polymer- coated glassy carbon electrodes in anodic stripping voltammetry.' Analytical chemistry 59.13 (1987): 1608-1614. [49] Harrison, D. Jed, Robin FB Turner, and H. P. Baltes. 'Characterization of perfluorosulfonic acid polymer coated enzyme electrodes and a miniaturized integrated potentiostat for glucose analysis in whole blood.' Analytical Chemistry 60.19 (1988): 2002-2007. [50] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd Edition, WILEY, 2000. [51] 呂慧菁,電化學葡萄糖感測試片之研發,國立中興大學化學研究所碩士論 文,(2003)。 [52] Instruments, E. G. G. 'Princeton Applied Research.' PO Box 2565. [53] W.S. Hummers Jr, R.E. Offeman, J. Am. Chem. Soc., 80 (1958) 1339-1339. [54] J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo, Chemical communications, 46 (2010) 1112-1114. [55] K. Zhou, Y. Zhu, X. Yang, C. Li, Electroanalysis, 23 (2011) 862-869. [56] Y. Oztekin, A. Ramanaviciene, Z. Yazicigil, A.O. Solak, A. Ramanavicius, Biosensors & bioelectronics, 26 (2011) 2541-2546. [57] L. E, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 101 (1979) 19-28. [58] X. Kang, J. Wang, H. Wu, I.A. Aksay, J. Liu, Y. Lin, Biosensors & bioelectronics, 25 (2009) 901-905. [59] P. Wu, Q. Shao, Y. Hu, J. Jin, Y. Yin, H. Zhang, C. Cai, Electrochimica Acta, 55 (2010) 8606-8614. [60] B. Unnikrishnan, S. Palanisamy, S.M. Chen, Biosensors & bioelectronics, 39 (2013) 70-75. [61] K. Wang, H. Yang, L. Zhu, Z. Ma, S. Xing, Q. Lv, J. Liao, C. Liu, W. Xing, Electrochimica Acta, 54 (2009) 4626-4630. [62] A. Salimi, R.G. Compton, R. Hallaj, Analytical biochemistry, 333 (2004) 49-56. [63] M. Zhou, L. Shang, B. Li, L. Huang, S. Dong, Biosensors & bioelectronics, 24 (2008) 442-447. [64] C. Fu, W. Yang, X. Chen, D.G. Evans, Electrochemistry Communications, 11 (2009) 997-1000. [65] Vidal, Juan-Carlos, et al. 'Three approaches to the development of selective bilayer amperometric biosensors for glucose by in situ electropolymerization.' Analyst 124.3 (1999): 319-324.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/91462-
dc.description.abstract本論文成功的利用簡單且快速的方法來製備以石墨烯(RGO)為主要材料之感測器。本論文分成二部份,第一部分主要探討以改良後的 Hummers method 製備出氧化石墨烯(GO),利用原子力顯微鏡觀察其表面形貌。再以抗壞血酸將氧化石墨烯(GO)還原成石墨烯(RGO),再以 UV-Vis 光譜儀、傅立葉轉換紅外光光譜儀、X-光繞射分析儀、拉曼光譜儀及電化學方法觀察氧化石墨烯(GO)是否成功還原,發現石墨烯(RGO)有大量的含氧官能基被移除了,使得石墨烯(RGO)不易分散於水中,證實利用此方法確實製備出氧化石墨烯(GO)及還原成石墨烯(RGO)。 第二部分主要在探討 GOD (Glucose oxidase)酵素的直接電子傳遞特性與其應用,將 GOD 酵素與 RGO/ Nafion 奈米複合薄膜一起修飾於 GCE 上,利用 AFM 去觀察 GOD 酵素修飾前與修飾後表面微結構的變化 再利用循環伏安法來探討 RGO/。GOD/ Nafion 奈米複合薄膜的電化學性質。由循環伏安法在 0.1M 的磷酸緩衝溶液(pH 7)的掃描之下可以觀察到一對可逆的氧化還原峰出現在-0.421 V 與-0.462 V 的位置,表示 GOD 酵素保持良好的活性在此奈米複合薄膜之中,並由不同掃描速率實驗得知此奈米複合薄膜為表面控制反應(surface-controlled)。經由各個條件最佳化後,利用循環伏安法以 RGO/ GOD/ Nafion 奈米複合薄膜來偵測葡萄糖濃度,所得到的靈敏度為 11.02μA mM-1 cm-2,線性範圍為 0.9-6 mM,R2 為 0.995。由干擾物實驗證實此葡萄糖生物感測器可避免掉敗壞血酸,尿酸之干擾,並成功將 RGO/GOD/ Nafion 奈米複合薄膜用來偵測合成血清中的葡萄糖。zh_TW
dc.description.abstractThe preparation, characterization, and sensor application of the long- and short-chain graphene oxide (GO) derivatives prepared by the modified Hummers method were investigated in this study, also use AFM research the surface structures. The fabricated GO and reduced graphene oxide (RGO) used as a reinforcing material for conducting polymer were characterized by UV-Vis spectroscopy、FT-IR、XRD、Raman and Electrochemistry method. The RGO removed a large number of oxidation function group by reducing agent will become less hydrophilic and be difficult to disperse in solution. In the next part, RGO was used to prepare a biosensor electrode for the detection of glucose concentrations by direct electrochemistry of glucose oxidase (GOD). The morphology of the RGO/ GOD/ Nafion nanocomposite was characterized by atomic force microscopy. The root-mean-square roughness value of the film surface decreased significantly after GOD was immobilized in the RGO/Nafion nanocomposite film. The electrochemical performance of the RGO/ GOD/ Nafion modified electrode was investigated by cyclic voltammetry. Cyclic voltammetry measurements of the immobilized GOD showed a pair of well-defined and quasi-reversible redox peaks at the RGO-based electrode and provided evidence for a surface-controlled electrode process. Cyclic voltammetry results showed the biosensor to have good sensitivity of 11.02μA mM-1 cm-2 and linear concentration range of 0.9 to 6 mM (R2 = 0.995). The biosensor exhibits good reproducibility and anti-interference properties, and is suitable for application in the determination of glucose in synthetic serum.en_US
dc.description.tableofcontents摘要........i Abstract ........ii 總目錄 ........iii 圖目錄 ........vi 表目錄 ........xi 第一章 緒論 ........1 1.1 前言 ........1 1.2 待測物簡介與文獻回顧 ........2 1.2.1 葡萄糖 ........2 1.3 葡萄糖氧化酵素與直接電子傳遞法之簡介 ........13 1.3.1 酵素簡介 ........13 1.3.2 葡萄糖氧化酵素 ........15 1.3.3 直接電子傳遞 ........19 1.4 石墨烯簡介與文獻回顧 ........23 1.4.1 石墨烯的性質簡介v 23 1.4.2 石墨烯的製備 ........26 1.4.3 石墨烯的應用 ........31 1.5 全氟磺酸聚合物 ........32 1.6 電化學原理與偵測方法 ........34 1.6.1 循環伏安法 ........34 1.6.2 安培法 ........36 1.6.3 方波伏安法法 ........39 第二章 實驗方法與步驟 ........40 2.1 實驗藥品........40 2.2 實驗儀器 v 40 2.3 實驗步驟........42 2.3.1 石墨烯氧化物(Graphene oxide,GO)的製備與還原 ........42 2.3.2 電極前處理 ........42 2.3.3 製備 RGO/Nafion ........43 2.3.4 製備 RGO/Nafion/GOD/GCE ........43 2.3.5 電化學分析與測試........44 第三章 結果與討論v 46 3.1 石墨烯氧化物(GO)及還原後的石墨烯(RGO)之探討 ........46 3.1.1 原子力顯微鏡 ........46 3.1.2 紫外光/可見光(UV-Vis)吸收光譜圖 ........49 3.1.3 傅立葉轉換紅外光光譜儀 (FT-IR) ........51 3.1.4 X-光繞射分析儀 (XRD) v 53 3.1.5 拉曼光譜儀 (Raman Spectrometer) ........54 3.1.6 電化學測試........56 3.2 RGO/ GOD/ Nafion 複合薄膜修飾 GCE 之葡萄糖感測器 ........57 3.2.1 RGO/ GOD/ Nafion 奈米薄膜微觀表面形貌探討 ........57 3.2.2 GOD 酵素之直接電子傳遞(DET)特性探討 ........60 3.2.3 RGO 與 GOD 酵素之最適化值分析與探討 ........62 3.2.4 pH 值對酵素影響之探討 v 65 3.2.5掃描速率對電極影響之探討 ........67 3.2.6 GOD 催化葡萄糖之反應機制探討 ........69 3.2.7 RGO/ GOD/ Nafion 作為葡萄糖感測器之探討 ........71 3.2.8 RGO/ GOD/ Nafion 對干擾物的影響及長時間下偵測葡萄糖的穩定度之影響與探討 ........73 3.2.9 RGO/ GOD/ Nafion 對合成血清之應用與探討 ........75 第四章 結論與未來展望 ........78 4.1 結論 ........78 4.2 未來展望 ........79 第五章 參考文獻 ........80zh_TW
dc.language.isozh_TWzh_TW
dc.rights同意授權瀏覽/列印電子全文服務,2018-07-15起公開。zh_TW
dc.subjectNoen_US
dc.subjectzh_TW
dc.title石墨烯/葡萄糖氧化酵素/全氟磺酸聚合物奈米複合薄膜作為生物感測器之探討zh_TW
dc.titleBiosensors based on graphene/glucose oxidase/nafion nanocompsite filmsen_US
dc.typeThesis and Dissertationen_US
dc.date.paperformatopenaccess2018-07-15zh_TW
dc.date.openaccess2018-07-15-
Appears in Collections:化學工程學系所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.