Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91474
標題: 膠體金添加對交聯型盤尼西林醯胺酵素之固定化活性影響
Effect of colloidal gold addition on the activity of Penicillin G Acylase by cross-linking immobilization
作者: Shih-Hsin Liang
梁世欣
關鍵字: colloidal gold
penicillin G acylase
penicillin G
6-aminopenicillanic acid
cross-linked enzyme aggregates
奈米膠體金
盤尼西林醯胺酵素
盤尼西林G
6-胺基青黴酸
交聯型聚合酵素
引用: 1. Delgado, J. and W.A. Remers, Wilson and Gisvold''s textbook of organic medicinal and pharmaceutical chemistry. 1991: Philadelphia ,Lippincott. 2. Suen, S.Y., Y.C. Liu, and C.S. Chang, Exploiting immobilized metal affinity membranes for the isolation or purification of therapeutically relevant species. Journal of Chromatography B, 2003. 797(1–2): p. 305-319. 3. Liese, A. and M.V. Filho, Production of fine chemicals using biocatalysis. Current opinion in biotechnology, 1999. 10(6): p. 595 -603. 4. Patel, R.N., Biocatalytic synthesis of intermediates for the synthesis of chiral drug substances. Current opinion in biotechnology, 2001. 12(6): p. 587-604. 5. Huisman, G.W. and D. Gray, Towards novel processes for the fine-chemical and pharmaceutical industries. Current opinion in biotechnology, 2002. 13(4): p. 352-358. 6. Sheldon, R.A., R. Schoevaart, and L.M. Van Langen, Cross-linked enzyme aggregates (CLEAs): A novel and versatile method for enzyme immobilization (a review). Biocatalysis and Biotransformation, 2005. 23(3-4): p. 141-147. 7. Wandrey, C., A. Liese, and D. Kihumbu, Industrial biocatalysis: Past, present, and future. Organic process research & development, 2000. 4(4): p. 286 -290. 8. L?opez-Serrano, P., L. Cao, F.v. Rantwijk, and R.A. Sheldon, Cross-linked enzyme aggregates with enhanced activity: application to lipases. Biotechnology letters, 2002. 24: p. 1379–1383. 9. Schoevaart, R., M.W. Wolbers, M. Golubovic, M. Ottens, A.P.G. Kieboom, F.v. Rantwijk, L.A.M.v.d. Wielen, and R.A. Sheldon, Preparation, Optimization, and Structures of Cross-Linked Enzyme Aggregates (CLEAs). Biotechnology and bioengineering, 2004. 87(6): p. 754-762. 10. Fitton, V., N. Verdoni, J. Sanchez, and X. Santarelli, Penicillin acylase purification with the aid of pseudo-affinity chromatography. J Biochem Biophys Methods, 2001. 49(1-3): p. 553-560. 11. Cao, L., L.v. Langeny, and R.A. Sheldon, Immobilised enzymes: carrier-bound or carrier-free? Current opinion in biotechnology, 2003. 14(4): p. 387 -394. 12. Mozhaev, V.V., M.V. Sergeeva, A.B. Belova, and Y.L. Khmelnitsky, Multipoint attachment to a support protects enzyme from inactivation by organic solvents: alpha-Chymotrypsin in aqueous solutions of alcohols and diols. Biotechnol Bioeng, 1990. 35(7): p. 653-659. 13. Arnold, F.H., Engineering proteins for nonnatural environments. FASEB J., 1993. 7(9): p. 744-749. 14. Reetz, M.T. and K.-E. Jaeger, Directed Evolution as a Means to Create Enantioselective Enzymes for Use in Organic Chemistry. Directed Molecular Evolution of Proteins, 2002: p. 245-279. 15. Roy, I. and M.N. Gupta, Enzymes in organic media. Forms, functions and applications. Eur J Biochem, 2004. 271(13): p. 2575-2583. 16. Brady, D. and J. Jordaan, Advances in enzyme immobilisation. Biotechnol Lett, 2009. 31: p. 1639-1650. 17. Clair, N.L.S. and M.A. Navia, Cross-linked enzyme crystals as robust biocatalysts. J. Am. Chem. Soc., 1992. 114(18): p. 7314-7316. 18. Partridge, J., P.J. Halling, and B.D. Moore, Practical route to high activity enzyme preparations for synthesis in organic media. Chem. Commun., 1998. 7: p. 841-842. 19. Roy, I. and M.N. Gupta, Preparation of highlyactive α-chymotrypsin for catalysis in organicmedia. Bioorganic & Medicinal Chemistry Letters, 2004. 14(9): p. 2191-2193. 20. Cao, L., F.v. Rantwijk, and R.A. Sheldon, Cross-Linked Enzyme Aggregates:? A Simple and Effective Method for the Immobilization of Penicillin Acylase. Org. Lett., 2000. 2(10): p. 1361-1364. 21. 潘建亮, 固定化盤尼西林去醯基酵素反應動力學建模及其兩水相系統分離反應之探討. 國立成功大學化學工程研究所博士論文, 2005. 22. Duggleby, H.J., S.P. Tolley, C.P. Hill, E.J. Dodson, G. Dodson, and P.C.E. Moody, Penicillin acylase has a single-amino-acid catalytic centre. Nature, 1995. 373. 23. Carlsen, F. and C. Emborg, Bacillus sphaericus V-penicillin acylase I. Fermentation. Biotechnology Letters, 1981. 3(7): p. 375-378. 24. Deshpande, B.S., S.S. Ambedkar, V.K. Sudhakaran, and J.G. Shewale, Molecular biology of β-lactam acylases. World Journal of Microbiology and Biotechnology, 1994. 10(2): p. 129-138. 25. Chiang, C. and R.E. Bennett, Purification and Properties of Penicillin Amidase from Bacillus megaterium. Journal of Bacteriology, 1967. 93(1): p. 302-308. 26. Hewitt, L., V. Kasche, K. Lummer, R.J. Lewis, G.N. Murshudov, C.S. Verma, G.G. Dodson, and K.S. Wilson, Structure of a slow processing precursor penicillin acylase from Escherichia coli reveals the linker peptide blocking the active-site cleft. Journal of Molecular Biology, 2000. 302(4): p. 887-898. 27. Mart?n, L., M.A. Prieto, E. Cort?s, and J. Garc?a, Cloning and sequencing of the pac gene encoding the penicillin G acylase of Bacillus megaterium ATCC 14945. FEMS Microbiology Letters, 1995. 125(2-3): p. 287-292. 28. Ohashi, H., Y. Katsuta, M. Nagashima, T. Kamei, and M. Yano, Expression of the Arthrobacter viscosus penicillin G acylase gene in Escherichia coli and Bacillus subtilis. Applied and Environmental Microbiology, 1989. 55(6): p. 1351-1356. 29. Cole, M., Formation of 6-Aminopenicillanic Acid, Penicillins, and Penicillin Acylase by Various Fungi. Applied Microbiology, 1966. 14(1): p. 98-104. 30. Hunt, P.D., S.P. Tolley, R.J. Ward, C.P. Hill, and G.G. Dodson, Expression, purification and crystallization of penicillin G acylase from Escherichia coli ATCC 11105. Protein Engineering, 1990. 3(7): p. 635-639. 31. Quiocho, F.A. and F.M. Richards, Intermolecular cross-linking of a protein in the crystalline state. Proc Natl Acad Sci USA, 1964. 52. 32. Wilson, L., A. Illanes, O. Abi?n, B.C.C. Pessela, R. Fern?ndez-Lafuente, and J.M. Guis?n, Co-Aggregation of Penicillin G Acylase and Polyionic Polymers:? An Easy Methodology To Prepare Enzyme Biocatalysts Stable in Organic Media. Biomacromolecules, 2004. 5(3): p. 852-857. 33. Rajendhran, J. and P. Gunasekaran, Recent biotechnological interventions for developing improved penicillin G acylases. Journal of Bioscience and Bioengineering, 2004. 97(1): p. 1-13. 34. 林宥欣, 以高密度大腸桿菌培養製程量產重組Penicillin Acylase. 逢甲大學化學工程研究所碩士論文, 2001. 35. 陳省宏, 電流與電位式量測釕氧化物與盤尼西林酵素修飾電極之研究. 2006, 國立雲林科技大學電子工程系碩士論文. 36. 張簡志強, 應用金屬親和薄膜分離純化盤尼西林醯胺酵素. 國立中興大學化學工程學系碩士論文, 2003. 37. Ostwald, W., An Introduction to Theoretical and Applied Colloid Chemistry. 1917, John Wiley & Sons. 38. Faraday, M., Philosophical Transactions of the Royal Society of London 147. 1857: p. 36. 39. Zsigmondy, R., The Chemistry of Colloids. New York, 1917. 40. Sharma, V., K. Park, and M. Srinivasarao, Colloidal dispersion of gold nanorods: Historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly. Materials Science and Engineering: R: Reports, 2009. 65(1–3): p. 1-38. 41. Chen, H., X. Kou, Z. Yang, W. Ni, and J. Wang, Shape- and Size-Dependent Refractive Index Sensitivity of Gold Nanoparticles. Langmuir, 2008. 24(10): p. 5233-5237. 42. Basu, S., S.K. Ghosh, S. Kundu, S. Panigrahi, S. Praharaj, S. Pande, S. Jana, and T. Pal, Biomolecule induced nanoparticle aggregation: Effect of particle size on interparticle coupling. Journal of Colloid and Interface Science, 2007. 313(2): p. 724-734. 43. Helmholtz, H., Ueber einige Gesetze der Vertheilung elektrischer Str?me in k?rperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche. Annalen der Physik, 1853. 165(6): p. 211-233. 44. 莊鈺堃, 以超重力法製備奈米氧化銅. 逢甲大學化學工程學系碩士論文, 2009. 45. Wang, Z.W., X.Z. Yi, G.Z. Li, D.R. Guan, and A.J. Lou, A functional theoretical approach to the electrical double layer of a spherical colloid particle. Chemical Physics, 2001. 274(1): p. 57-69. 46. Verwey, E.J.W., Theory of the Stability of Lyophobic Colloids. The Journal of Physical and Colloid Chemistry, 1947. 51(3): p. 631-636. 47. Leite, F., C. Bueno, and E. Ziemath, Theoretical Models for Surface Forces and Adhesion and Their Measurement Using Atomic Force Microscopy. International Journal of Molecular Sciences, 2012. 13: p. 12773-12856. 48. Kallay, N., T. Preo?anin, F. ?upljika, J. L?tzenkirchen, and M. Lovkovi?, Influence of interfacial water layer on surface properties of silver halides: Effect of pH on the isoelectric point. Journal of Colloid and Interface Science, 2012. 375(1): p. 167-171. 49. Page Faulk, W. and G. Malcolm Taylor, Communication to the editors: An immunocolloid method for the electron microscope. Immunochemistry, 1971. 8(11): p. 1081-1083. 50. Qian, X., X.H. Peng, and D. Ansar, In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol, 2008. 26(1): p. 83-90. 51. Langer, R., Biomaterials for Drug Delivery and Tissue Engineering. MRS Bulletin, 2006. 31(06): p. 477-485. 52. 杜武俊, 免疫層析檢驗法在登革病毒檢測上之應用及開發. 國立中興大學昆蟲學系研究所碩士論文, 2003. 53. 田蔚城, 生物技術的發展與應用. 九州圖書文物有限公司, 1998. 54. Tischer, W. and F. Wedekind, Immobilized Enzymes: Methods and Applications. Topics in Current Chemistry, 1999. 200: p. 95-126. 55. 陳國誠, 生物固定化技術與產業應用. 茂昌圖書有限公司, 1990: p. 48-57. 56. Cao, L., L.V. Langen, and R.A. Sheldon, Immobilised enzymes: carrier-bound or carrier-free? Current Opinion in Biotechnology, 2003. 14(4): p. 387-394. 57. Wilson, L., A. Illanes, O. Abian, B.C.C. Pessela, R. Fernandez-Lafuente, and J.M. Guisan, Co-aggregation of penicillin G acylase and polyionic polymers: An easy methodology to prepare enzyme biocatalysts stable in organic media. Biomacromolecules, 2004. 5(3): p. 852-857. 58. Wilson, L., A.s. Illanes, L. Soler, and M.a.J. Henr??quez, Effect of the degree of cross-linking on the properties of different CLEAs of penicillin acylase. Process Biochemistry 2009. 44: p. 322-326. 59. 李易蒼, 交聯型聚合酵素製備方法、特性及固定化應用之評估分析. 國立中興大學化學工程學系碩士學位論文, 2012. 60. Rajendhran, J. and P. Gunasekaran, Application of cross-linked enzyme aggregates of Bacillus badius penicillin G acylase for the production of 6-aminopenicillanic acid. Letters in Applied Microbiology, 2007. 44(1): p. 43-49. 61. Mateo, C., J.M. Palomo, L.M. van Langen, F. van Rantwijk, and R.A. Sheldon, A new, mild cross-linking methodology to prepare cross-linked enzyme aggregates. Biotechnology and bioengineering, 2004. 86(3): p. 273-276. 62. Valdes, E.C., L.W. Soto, and G.A. Arcaya, Influence of the pH of glutaraldehyde and the use of dextran aldehyde on the preparation of cross-linked enzyme aggregates (CLEAs) of lipase from Burkholderia cepacia. Electronic Journal of Biotechnology, 2011. 14(3). 63. Kazan, D., H. Ertan, and A. Erarslan, Stabilization of Escherichia coli penicillin G acylase against thermal inactivation by cross-linking with dextran dialdehyde polymers. Applied Microbiology and Biotechnology, 1997. 48(2): p. 191-197. 64. Sheldon, R.A., Cross-Linked Enzyme Aggregates (CLEAs): An Enabling Technology, 2011: CLEA Technologies. p. 1-7. 65. 張春生, 生物觸媒--酵素在現代工業所扮演的角色, 2004: 南台科技大學生物科技系會議論文. p. 1-4. 66. Schmid, A., J.S. Dordick, B. Hauer, A. Kiener, M. Wubbolts, and B. Witholt, Industrial biocatalysis today and tomorrow. Nature, 2001. 409(6817): p. 258-268. 67. Chang, C.S. and S.W. Tsai, A facile enzymatic process for the preparation of (s)-Naproxen ester prodrug in organic solvents. Enzyme and Microbial Technology, 1997. 20(8): p. 635-639. 68. Shang, C.S. and C.S. Hsu, Lipase-catalyzed enantioselective esterification of (S)-naproxen hydroxyalkyl ester in organic media. Biotechnology letters, 2003. 25(5): p. 413-416. 69. Wang, M.F., W. Qi, C.X. Jia, Y.F. Ren, R.X. Su, and Z.M. He, Enhancement of activity of cross-linked enzyme aggregates by a sugar-assisted precipitation strategy: Technical development and molecular mechanism. Journal of Biotechnology, 2011. 156(1): p. 30-38. 70. Cao, L., L.M.v. Langen, F.v. Rantwijk, and R.A. Sheldon, Cross-linked aggregates of penicillin acylase: robust catalysts for the synthesis of b-lactam antibiotics. Journal of Molecular Catalysis B: Enzymatic, 2001. 11: p. 665-670. 71. Migneault, I., C. Dartiguenave, M.J. Bertrand, and K.C. Waldron, Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques, 2004. 37(5): p. 790-802. 72. 余焜乾, 固定化酵素N-carbamoyl-D-amino acid amidohydrolase於再生纖維膜上之效率探討. 國立中興大學化學工程學系碩士學位論文, 2010. 73. Zhou, J.J., The function of promoter and spacer sequence of pac gene from E. coli ATCC 9637. Department and Graduate Institute of Microbiology and Immunology, 1992. 74. Archer, C., J. Kim, H. Jeong, J. Park, C. Vickers, S. Lee, and L. Nielsen, The genome sequence of E. coli W (ATCC 9637): comparative genome analysis and an improved genome-scale reconstruction of E. coli. BMC Genomics 2011. 12. 75. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976. 72(1–2): p. 248-254. 76. Link, S., C. Burda, Z.L. Wang, and M.A. El-Sayed, Electron dynamics in gold and gold–silver alloy nanoparticles: The influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation. The Journal of Chemical Physics, 1999. 111(3): p. 1255-1264. 77. Robenek, H., Colloidal gold: Principles, methods, and applications vols. I and II (vol. III in preparation) Edited by M. A. Hayat Academic Press, Inc., New York, 1989 ISBN 0–12–333927–8, Vol. I, 536 pages ISBN 0–12–333928–6, Vol. II, 484 pages. Scanning, 1990. 12(4): p. 244-244. 78. Shah, S., A. Sharma, and M.N. Gupta, Preparation of cross-linked enzyme aggregates by using bovine serum albumin as a proteic feeder. Analytical Biochemistry, 2006. 351: p. 207–213. 79. Wilson, L., A. Illanes, L. Soler, and M.J. Henr?quez, Effect of the degree of cross-linking on the properties of different CLEAs of penicillin acylase. Process Biochemistry, 2009. 44(3): p. 322-326. 80. Balasingham, K., D. Warburton, P. Dunnill, and M.D. Lilly, The isolation and kinetics of penicillin amidase from Escherichia coli. Biochimica et Biophysica Acta (BBA) - Enzymology, 1972. 276(1): p. 250-256.
摘要: The immobilization techniques have been widely used in the industry, especially the medical and biopharmaceutical manufacture. An ideal enzyme immobilization process must fulfill the advantages of high recyclability, wide applications, low cost and safety. In this study, it is focused on the immobilization of penicillin G acylase (PGA) by using colloidal gold (CG) to investigate the influences on the biotransformation of 6-aminopenicillanic acid (6-APA) from penicillin G (PG). In order to obtain the optimal immobilization condition for PGA, the size of CG particles was controlled and discussed by applying the trisodium citrate and HAuCl4. The prepared CG particles with fixed size of 40nm were further used to study the effects of NaCl on particle size through the isoelectric point control of CG particles. The effects on the activity and reusability were discussed with the immobilization of PGA by different sizes of CG particles. This study was divided into three parts. In the first part, the particle size of CG was controlled to 100-1000 nm to immobilize PGA. The effect of PGA activity and reusability were discussed by applying different sizes of CG particles. The optimal conditions for PGA immobilization were pH 8-9, CG/PGA ratio 4/1, and CG particle size of 500-1000 nm. In second part, the PGA-CG was aggregated by adding NaCl to investigate the effects on the reusability of PGA. The results show the particle size of CG-PGA can be efficiently increased by the aggregation process. In third part, the cross-linked enzyme aggregates process was produced to test the large size particles effect on PGA activity. From the results, PGA CLEAs- 1 CG was found to be the best construction. The optimal conditions gave 39.53% of cross-link protein recovery and 58.61% in residual enzyme activity. The energy of activation for PGA biotransformation could be effectively reduced by immobilization with CG. The immobilization process with the advantages of low cost, no matrix, and simple to process, has a great potential in the R&D of biochemical reaction technology.
URI: http://hdl.handle.net/11455/91474
其他識別: U0005-2811201416181955
文章公開時間: 2017-08-31
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.