Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91475
標題: 膠體金添加對固定化盤尼西林酵素活性 效應之影響
Effect of colloidal gold addition on the activity performance of the immobilized penicillin acylase membrane
作者: Yi-Chien Liao
廖以謙
關鍵字: Penicillin G acylase
nano
immobilized PGA membrane
Immobilized metal affinity membrane
Enzymes purification
Colloidal Gold
regeneration process
bifunctional membrane.
盤尼西林醯胺酵素
奈米
膠體金
IMAM-Cu2+-PGA
金屬固定化薄膜
製備程序
固定酵素膜
IMAM-Cu2+膜
引用: 1. Knight, P., Downstream Processing. Nat Biotechnol, 1989. 7(8): p. 777-782. 2. Ghosh, R., Protein separation using membrane chromatography: opportunities and challenges. J Chromatogr A, 2002. 952(1-2): p. 13-27. 3. Freitag, R., H. Splitt, and O.-W. Reif, Controlled mixed-mode interaction chromatography on membrane adsorbers. J Chromatogr A, 1996. 728(1-2): p. 129-137. 4. Fitton, V., N. Verdoni, J. Sanchez, and X. Santarelli, Penicillin acylase purification with the aid of pseudo-affinity chromatography. J Biochem Biophys Methods, 2001. 49(1-3): p. 553-560. 5. Suen, S.Y., Y.C. Liu, and C.S. Chang, Exploiting immobilized metal affinity membranes for the isolation or purification of therapeutically relevant species. J Chromatogr B, 2003. 797(1-2): p. 305-19. 6. Senel, S., R. Say, Y. Arica, and A. Denizli, Zinc ion-promoted adsorption of lysozyme to Cibacron Blue F3GA-attached microporous polyamide hollow-fiber membranes. Colloids surface A, 2001. 182: p. 161-173. 7. Crawford, J., S. Ramakrishnan, P. Periera, S. Gardner, M. Coleman, and R. Beitle, Immobilized metal affinity membrane separation: characteristics of two materials of differing preparation chemistries. Separation Sci. Technol., 1999. 34: p. 2793-2802. 8. Kumar, R. and R. Prasad, Purification and characterization of a major zinc binding protein from renal brush border membrane of rat. Biochimica et Biophysica Acta, 1999. 1419 p. 23-32. 9. Hu, H.L., M.Y. Wang, C.H. Chung, and S.Y. Suen, Purification of VP3 protein of infectious bursal disease virus using nickel ion-immobilized regenerated cellulose-based membranes. J Chromatogr B, 2006. 840(2): p. 76-84. 10. Wu, C.Y., S.Y. Suen, S.C. Chen, and J.H. Tzeng, Analysis of protein adsorption on regenerated cellulose-based immobilized metal affinity membranes. J Chromatogr A, 2003. 996: p. 53-70. 11. M, B. and P. J, Immobilized metal ion affinity chromatography. Effect of solute structure, ligand density and salt concentration on the retention of peptides. J Chromatogr A, 1990. 516(2): p. 333-354. 12. Anspach, F.B., Silia-based metal chelate affinity sorbents I. Preparation and characterization of iminodiacetic acid affinity sorbents prepared via different immobilization techniques. J Chromatogr A, 1994. 672: p. 35-49. 13. Boyde, A. and M.A. Hayat, Colloidal Gold. Principles, Methods and Application. 1991. 176. 14. Chandler, J., T. Gurmin, and N.Robinson, The place of gold in rapid tests. . 2000. 6(2). 15. Gole, A., et al and S.o.t.f.o.b.o.E.w.c. gold., Colloids and Surfaces B. 2002. 25. 16. 陳光宇, 大腸桿菌醱酵生產盤尼西林醯胺酵素代謝工程之研究. 國立中興大學化學工程研究所碩士論文, 1999. 17. 黃宏彰, 高細胞密度醱酵培養基因重組大腸桿菌以生產盤尼西林醯胺酵素. 國立中興大學化學工程研究所碩士論文, 2002. 18. Liu, Y.C., C.C. ChangChien, and S.Y. Suen, Purification of penicillin G acylase using immobilized metal affinity membranes. J Chromatogr B, 2003. 794(1): p. 67-76. 19. Daniel, M.C. and D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. 2004. 104: p. 293. 20. Schumacher, G., D. Sizmann, H. Haug, P. Buckel, and A. Bo?ck, Penicillin acylase from E. coli: unique gene-protein relation. Nucleic Acids Res, 1986. 14: p. 5713-5727. 21. JERKER PORATH, J.C., INGMAR OLSSON & GRETA BELFRAGE, Metal chelate affinity chromatography, a new approach to protein fractionation. Nature, 1975. 258. 22. 蔡嘉寅與陳益明, 生物化學工程. 2002: 國立台灣大學生物技術研究中心. 23. Sulkowski, E., Purification of proteins by IMAC. Trends Biotechnol., 1985. 3: p. 1-7. 24. Hemdan, E.S. and J. Porath, Development of immobilized metal affinity chromatography : II. Interaction of amino acids with immobilized nickel iminodiacetate. J Chromatogr A, 1985. 323(2): p. 255-264. 25. Johnson, R.D. and F.H. Arnold, Multiponit binding and heterogeneity in immobilized metal affinity chromatography. Biotechnol Bioeng, 1995. 48: p. 437-443. 26. Ueda, E.K.M., P.W. Gout, and L. Morganti, Current and prospective application of metal ion-protein binding. J Chromatogr A, 2003. 988: p. 1-23. 27. Gaberc-Porekar, V. and V. Menart, Reveiw perspectives of immobilized-metal affinity chromatography. J. Biochem. Biophys. Methods, 2001. 49: p. 335-360. 28. Chaga, G.S., Review twenty-five years of immobilized metal ion affinity chromatography: past, present and future. J. Biochem. Biophys. Methods, 2001. 49: p. 313-334. 29. Kubota, N., Y. Nakagawa, and Y. Eguchi, Recovery of serum proteins using cellulosic affinity membrane modified by Immobilization of Cu2+ Ion. J Appl Polym Sci Symp, 1996. 62: p. 1153-1160. 30. Yang., L., L. Jia, H. Zou, D. Zhou, and Y. Zhang, Immobilized metal affinity composite membrane based on cellulose for separation of biopolymers. Science in China. Series B, Chemistry, life sciences & earth sciences, 1998. 41: p. 596-605. 31. Beeskow, T.C., W. Kusharyoto, K.H. Kroner, W.D. Deckwer, and F.B. Anspach, Surface modification of microporous polyamide membranes with hydroxyethyl cellulose and their application as affinity membranes. J Chromatogr A, 1995. 715: p. 49-65. 32. Grasselli, M., A.A.N. del Canizo, S.A. Camperi, F.J. Wolman, E.E. Smolko, and O. Cascone, Immobilized metal ion affinity hollow-fiber membranes obtained by the direct grafting technique. Radiat. Phys. Chem., 1999. 55: p. 203-208. 33. Reif, O.-W., V. Nier, U. Bahr, and R. Freitag, Immobilized metal affinity membrane adsorbers as stationary phases for metal interaction protein separation. J Chromatogr A, 1994. 664: p. 13-25. 34. Zhang, C.-M., S.A. Reslewic, and C.E. Glatz, Suitability of immobilized metal affinity chromatography for protein purification from canola. Biotechnol Bioeng, 1999. 68: p. 52-58. 35. Gibert, S., N. Bakalara, and X. Santarelli, Three-step chromatographic purification procedure for the production of a His-tag recombinant kinesin overexpressed in E . coli. J Chromatogr B, 2000. 737: p. 143-150. 36. Sanchez, J., N. Verdoni, V. Fitton, and X. Santarelli, Efficient two-step chromatographic purification of penicillin acylase from clarified Escherichia coli ultrasonic homogenate J Chromatogr B, 2001. 753(1): p. 45-50. 37. Zou, H., Q. Luo, and D. Zhou, Affinity membrane chromatography for the analysis and purification of proteons. J Biochem Biophys Methods, 2001. 49: p. 199-240. 38. 何立凡, 金屬親和吸附材於蛋白質純化之應用, in 國立中興大學化學工程研究所碩士論文2002. 39. Rassi, Z.E. and C. Horvath, Metal chelate-interaction chromatography of proteins with iminodiacetic acid-bonded stationary phases on silica support. J Chromatogr, 1986. 359: p. 241-253. 40. A, L., S.-N. C, L. KP, M. KG, and B.-H. TC, Divinylsulphone-activated agarose. Formation of stable and non-leaking affinity matrices by immobilization of immunoglobulins and other proteins. J Chromatogr., 1986. 376: p. 299-305. 41. Liesiene, J., K. Racaityte, M. Morkeviciene, P. Valancius, and B. Bumelis, Immobilized metal affinity chromatography of human growth hormone Effect of ligand density. J Chromatogr A, 1997. 764(1): p. 27-33. 42. Vancan, S., E.A. Miranda, and S.M.A. Bueno, IMAC of human IgG: studies with IDA-immobilized copper, nickel, zinc, and cobalt ions and different buffer systems. Proc Biochem, 2002. 37: p. 573-579. 43. Armisen, P., C. Mateo, E. Cortes, J.L. Barredo, F. Salto, B. Diez, L. Rodes, J.L. Garc, R. Fernandez-Lafuente, and J.M. Guisan, Selective adsorption of poly-His tagged glutaryl acylase on tailor-made metal chelate supports. J Chromatogr A, 1999. 848: p. 61-70. 44. Arnold, F.H., Metal-Affinity Separations: A New Dimension in Protein Processing. Nat Biotechnol, 1991. 9: p. 151-156. 45. Gaberc-Porekar, V. and V. Menart, Perspectives of immobilized-metal affinity chromatography. J Biochem Biophys Methods, 2001. 49: p. 335-360. 46. Chaga, G.S., B. Ersson, and J.O. Porath, Isolation of calcium-binding proteins on selective adsorbents application to purification of bovine calmodulin. J. Chromatogr. A, 1996. 732: p. 261-269. 47. Porath, J., B. Olin, and B. Granstrand, Immobilized-metal affinity chromatography of serum proteins on gel-immobilized group IIIA metal ions. Arch. Biochem. Biophys., 1983. 225: p. 543-547. 48. Chaga, G., J. Hopp, and P. Nelson, Immobilized metal ion affinity chromatography on Co2+-carboxymethylaspartate-agarose Superflow, as demonstrated by one-step purification of lactate dehydrogenase from chicken breast muscle. Biotechnol. Appl. Biochem., 1999. 29: p. 19-24. 49. Mateo, C., G. Fernandez-Lorente, E. Cortes, J.L. Garcia, R. Fernandez-Lafuente, and J.M. Guisan, One-step purification, covalent immobilization, and additional stabilization of poly-his-tagged proteins using novel heterofunctional chelate-epoxy supports. Biotechnol Bioeng, 2001. 76: p. 269-276. 50. Mateo, C., G. Fernandez-Lorente, B.C.C. Pessela, A. Vian, A.V. Carrascosa, J.L. Garcia, R. Fernandez-Lafuente, and J.M. Guisan, Affinity chromatography of polyhistidine tagged enzymes new dextran-coated immobilized metal ion affinity chromatography matrices for prevention of undesired multipoint adsorptions. J Chromatogr A, 2001. 915: p. 97-106. 51. Liu, Y.-C., S.-Y. Suen, C.-W. Huang, and C.-C. ChangChien, Effects of spacer arm on penicillin G acylase purification using immobilized metal affinity membranes. J Membr Sci, 2005. 251(1-2): p. 201-207. 52. Kotha, A., L. Selvaraj, C.R. Rajan, S. Ponrathnam, K.K. Kumar, G.R. Ambekar, and J.G. Shewale, Adsorption and expression of penicillin G acylase immobilized onto methacrylate polymers generated with varying pore generating solvent volume Appl Biochem Biotechnol, 1991. 30(3): p. 297-302. 53. Naidja, A., P.M. Huang, and J.-M. Bollag, Activity of tyrosinase immobilized on hydroxyaluminum-montmorillonite complexes Journal of Molecular Catalysis A: Chemical, 1997. 115(2): p. 305-316. 54. He, J., X. Li, D.G. Evans, X. Duan, and C. Li, A new support for the immobilization of penicillin acylase. Journal of Molecular Catalysis B: Enzymatic, 2000. 11(1): p. 45-53. 55. 陳國誠, 生物固定化技術與產業應用. 茂昌圖書有限公司, 2000. 56. 潘建?, 固定化盤尼西?去醯基酵素反應動?學建模及其?水相系統分?反應之探討. 國?成功大學化學工程研究所博士?文, 2005. 57. K, Y. and H. S, Gradient and isocratic high-performance liquid chromatography of proteins on a new agarose-based anion exchanger. J Chromatogr. , 1987. 385: p. 87-98. 58. VV, M., Mechanism-based strategies for protein thermostabilization. Trends Biotechnol. , 1993. 11(3): p. 88-95. 59. M., B.R. and G.J. M., Stabilisation of enzymes by multipoint covalent attachment to agarose-aldehyde gels. Borohydride reduction of trypsin-agarose derivatives. Enzyme and microbial technology 1989. 11: p. 360-66. 60. Katchalski-Katzir, E., Immobilized enzymes - learning from past successes and failures. Trends in Biotechnology, 1993. 11(11): p. 471-478. 61. Schmid, A., J.S. Dordick, B. Hauer, A. Kiener, M. Wubbolts, and B. Witholt, Industrial biocatalysis today and tomorrow. Nature 2001. 409: p. 258-268. 62. Turkova, J., Oriented immobilization of biologically active proteins as a tool for revealing protein interactions and function. J Chromatogr B, 1999. 722(1): p. 11-31. 63. Mateo, C., O. Abian, R. Fernandez-Lafuente, and J.M. Guisan, Reversible enzyme immobilization via a very strong and nondistorting ionic adsorption on support-polyethylenimine composites. Biotechnol Bioeng, 2000. 68: p. 95-105. 64. Bradford, M.M. and A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976. 72: p. 248-254. 65. Johnson, R.D., R.J. Todd, and F.H. Arnold, Multipoint binding in metal-affinity chromatography II. Effect of pH and imidazole on chromatographic retention of engineered histidine-containing cytochromes J Chromatogr A, 1996. 725: p. 225-235. 66. M., B., W. M., and B. D., Synthesis of Thiol-derivatised Gold Nanopartilces in a Two-phase Liquid-Liquid. 1994. 67. G., F., Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nature Phys. Sci., 1973. 68. Bohren C.F. and H.D. R., Absorption and Scattering of Light by Small Particles. Wiley, 1983. 69. Bradley, J.S., The Chemistry of Transition Metal Colloids. In Clusters and Colloids. VCH Publishers, 1994.
摘要: 在純化技術發展中,金屬固定化薄膜(immobilized metal affinity membranes, IMAM)己被應用於純化酵素方面,利用製備的IMAM膜再改質為IMAM-Cu2+,再使用此薄膜與不同粒徑奈米膠體金 (Colloidal Gold, CG)和盤尼醯林醯胺酵素(penicillin Gacylase, PGA)結合,試著增加反應載體上酵素量與活性來提高PGA之反應效率。 實驗過程中首先製作IMAM-Cu2+膜,再以不同粒徑大小膠體金與盤尼醯林醯胺酵素先行結合後,並與IMAM-Cu2+膜反應,來探討CG粒徑對於對6-APA反應轉化效率之影響。第二步利用其CG最佳粒徑改變其與PGA的比例來探討製備添加CG的多寡是否會影響PGA對反應生成6-APA之轉化效率。第三步將CG直接與IMAM膜結合來討論與IMAM-Cu2+的活性差異性。研究發現最佳添加條件為﹕盤尼醯林醯胺酵素35ml加上0.1?g/ml奈米膠體金(D=32.2nm) 15ml 溶液,在pH8, 50mM磷酸鹽緩衝液中、溫度保持37℃條件下,添加CG之轉化效率比未添加CG的IMAM-Cu2+-PGA薄膜,增加1.8倍之反應活性。
In the development of purification technology, the immobilized metal ion affinity membrane (IMAM) has been applied to various enzymes purification. The self-prepared IMAM was chelated with copper to form IMAM-Cu2+ and this membrane was used to immobilize penicillin G acylase (PGA) with the aid of different nano-particle sizes colloid gold (CG). The first step is to study the influences of the particle sizes of CG on PGA activity. It was found that the best particle size of CG was 32.2nm. The next step is to study the ratio of CG to PGA on PGA activity. The third step is to study the immobilization process. The procedure for coupling CG and IMAM is critical to the process. The optimal conditions are found as follows : 35ml PGA plus 15ml CG (D=32.2nm), pH8, 50 mM phosphate buffer, and at 37 ℃, the activity of the IMAM -CG immobilized PGA membrane gave the activity 1.8 time better than that without CG addition.
URI: http://hdl.handle.net/11455/91475
其他識別: U0005-2811201416194838
文章公開時間: 2017-08-31
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.