Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91491
標題: 酵素催化合成綠原酸酯之最適化探討
Optimization of lipase-catalyzed synthesis of chlorogenate ester
作者: Tsung-Han Lin
林琮涵
關鍵字: Keywords: Lipase
response surface methodology
chlorogenic acid
optimal
Esterification
enzymatic synthesis
關鍵字:脂解酵素
反應曲面法
綠原酸
最適化
酯化反應
酵素合成
引用: 1. Upadhyay, R., K. Ramalakshmi and L. Jagan Mohan Rao, Microwave-assisted extraction of chlorogenic acids from green coffee beans. Food Chemistry, 2012. 130(1): p. 184-188. 2. Clifford, M. N., Chlorogenic acids and other cinnamates – nature, occurrence, dietary burden, absorption and metabolism. Journal of the Science of Food and Agriculture, 2000. 80(7): p. 1033-1043. 3. Sasaki, K., J. Alamed, J. Weiss, P. Villeneuve, L. J. López Giraldo, J. Lecomte, M.-C. Figueroa-Espinoza and E. A. Decker, Relationship between the physical properties of chlorogenic acid esters and their ability to inhibit lipid oxidation in oil-in-water emulsions. Food Chemistry, 2010. 118(3): p. 830-835. 4. Iwai, K., N. Kishimoto, Y. Kakino, K. Mochida and T. Fujita, In Vitro Antioxidative Effects and Tyrosinase Inhibitory Activities of Seven Hydroxycinnamoyl Derivatives in Green Coffee Beans. Journal of Agricultural and Food Chemistry, 2004. 52(15): p. 4893-4898. 5. Yagasaki, K., Y. Miura, R. Okauchi and T. Furuse, Inhibitory effects of chlorogenic acid and its related compounds on the invasion of hepatoma cells in culture. Cytotechnology, 2000. 33(1-3): p. 229-235. 6. 盧鳳薇, 綠原酸抑制黑色素生成之研究. 清華大學化學工程學系碩士論文,2009. 7. Hosaka, S., S. Kawa, Y. Aoki, E. Tanaka, K. Yoshizawa, Y. Karasawa, N. Hosaka and K. Kiyosawa, Hepatocarcinogenesis inhibition by caffeine in ACI rats treated with 2 acetylaminofluorene. Food and Chemical Toxicology, 2001. 39(6): p. 557-561. 8. López-Giraldo, L. J., M. Laguerre, J. Lecomte, M.-C. Figueroa-Espinoza, B. Baréa, J. Weiss, E. A. Decker and P. Villeneuve, Kinetic and Stoichiometry of the Reaction of Chlorogenic Acid and Its Alkyl Esters against the DPPH Radical. Journal of Agricultural and Food Chemistry, 2009. 57(3): p. 863-870. 9. Suárez-Quiroz, M. L., W. Taillefer, E. M. López Méndez, O. González-Ríos, P. Villeneuve and M. C. Figueroa-Espinoza, Antibacterial Activity and Antifungal and Anti-Mycotoxigenic Activities Against Aspergillus flavus and A. ochraceus of Green Coffee Chlorogenic Acids and Dodecyl Chlorogenates. Journal of Food Safety, 2013. 33(3): p. 360-368. 10. Salis, A., V. Solinas and M. Monduzzi, Wax esters synthesis from heavy fraction of sheep milk fat and cetyl alcohol by immobilised lipases. Journal of Molecular Catalysis B: Enzymatic, 2003. 21(4–6): p. 167-174. 11. Chang, H.-M., H.-F. Liao, C.-C. Lee and C.-J. Shieh, Optimized synthesis of lipase-catalyzed biodiesel by Novozym 435. Journal of Chemical Technology & Biotechnology, 2005. 80(3): p. 307-312. 12. Güvenç, A., N. Kapucu, H. Kapucu, Ö. Aydoğan and Ü. Mehmetoğlu, Enzymatic esterification of isoamyl alcohol obtained from fusel oil: Optimization by response surface methodolgy. Enzyme and Microbial Technology, 2007. 40(4): p. 778-785. 13. 吳宗達, 已連續式填充床生物反應器探討脂解酵素催化生質柴油之最優化合成. 大葉大學生物科技產業研究所碩士論文, 2007. 14. Ciafardini, G., B. A. Zullo and A. Iride, Lipase production by yeasts from extra virgin olive oil. Food Microbiology, 2006. 23(1): p. 60-67. 15. Isono, Y., H. Nabetani and M. Nakajima, Lipase-surfactant complex as catalyst of interesterification and esterification in organic media. Journal of Fermentation and Bioengineering, 1995. 80: p. 170-175. 16. Ghamgui, H., N. Miled, A. Rebaï, M. Karra-chaâbouni and Y. Gargouri, Production of mono-olein by immobilized Staphylococcus simulans lipase in a solvent-free system: Optimization by response surface methodology. Enzyme and Microbial Technology, 2006. 39(4): p. 717-723. 17. Villeneuve, P., J. M. Muderhwa, J. Graille and M. J. Haas, Customizing lipases for biocatalysis: a survey of chemical, physical and molecular biological approaches. Journal of Molecular Catalysis B: Enzymatic, 2000. 9(4–6): p.113-148. 18. Rogalska, E., C. Cudrey, F. Ferrato and R. Verger, Stereoselective hydrolysis of triglycerides by animal and microbial lipases. Chirality, 1993. 5(1): p. 24-30. 19. Garcı́a, R., A. Renedo, M. Martı́nez and J. Aracil, Enzymatic synthesis of n-octyl (+)-2-methylbutanoate ester from racemic (±)-2-methylbutanoic acid by immobilized lipase: optimization by statistical analysis. Enzyme and Microbial Technology, 2002. 30(1): p. 110-115. 20. Kristensen, J., X. Xu and H. Mu, Diacylglycerol synthesis by enzymatic glycerolysis: Screening of commercially available lipases. Journal of the American Oil Chemists'' Society, 2005. 82(5): p. 329-334. 21. Xin, J.-y., L. Zhang, L.-l. Chen, Y. Zheng, X.-m. Wu and C.-g. Xia, Lipase-catalyzed synthesis of ferulyl oleins in solvent-free medium. Food Chemistry, 2009. 112(3): p. 640-645. 22. Würtz Christensen, M., L. Andersen, T. L. Husum and O. Kirk, Industrial lipase immobilization. European Journal of Lipid Science and Technology, 2003. 105(6): p. 318-321. 23. Chang, S.-F., S.-W. Chang, Y.-H. Yen and C.-J. Shieh, Optimum immobilization of Candida rugosa lipase on Celite by RSM. Applied Clay Science, 2007. 37(1–2): p. 67-73. 24. Li, S.-F., J.-P. Chen and W.-T. Wu, Electrospun polyacrylonitrile nanofibrous membranes for lipase immobilization. Journal of Molecular Catalysis B: Enzymatic, 2007. 47(3–4): p. 117-124. 25. Sakai, S., K. Antoku, T. Yamaguchi and K. Kawakami, Transesterification by lipase entrapped in electrospun poly(vinyl alcohol) fibers and its application to a flow-through reactor. Journal of Bioscience and Bioengineering, 2008. 105(6): p. 687-689. 26. Li, S.-F. and W.-T. Wu, Lipase-immobilized electrospun PAN nanofibrous membranes for soybean oil hydrolysis. Biochemical Engineering Journal, 2009. 45(1): p. 48-53. 27. Chen, G.-J., C.-H. Kuo, C.-I. Chen, C.-C. Yu, C.-J. Shieh and Y.-C. Liu, Effect of membranes with various hydrophobic/hydrophilic properties on lipase immobilized activity and stability. Journal of Bioscience and Bioengineering, 2012. 113(2): p. 166-172. 28. 郭勇, 酵素工程學原理與技術. 藝軒圖書出版社, 2008: p. 227-333. 29. Vilma, M., W. Eleneora and K. Slobodanka, Lipase immobilized by different techniques on various support materials applied in oil hydrolysis. Journal of the Serbian Chemical Society, 2005. 70(4): p. 609-624. 30. G., Ž. M., Š.-M. S. S. and K. Z. D., Immobilization of penicillin acylase from Escherichia coli on commercial sepabeads EC-EP carrier. Acta periodica technologica, 2007(38): p. 173-182. 31. 劉英俊, 酵素工程學. 中央圖書出版社, 2002. 32. 陳國誠, 生物固定化技術與產業運用. 茂昌圖書有限公司, 2000: p.121-155. 33. Garcia, T., A. Coteron, M. Martinez and J. Aracil, Kinetic model for the esterification of oleic acid and cetyl alcohol using an immobilized lipase as catalyst. Chemical Engineering Science, 2000. 55(8): p. 1411-1423. 34. Guyot, B., D. Gueule, M. Pina, J. Graille, V. Farines and M. Farines, Enzymatic synthesis of fatty esters in 5-caffeoyl quinic acid. European Journal of Lipid Science and Technology, 2000. 102(2): p. 93-95. 35. López Giraldo, L. J., M. Laguerre, J. Lecomte, M.-C. Figueroa-Espinoza, N. Barouh, B. Baréa and P. Villeneuve, Lipase-catalyzed synthesis of chlorogenate fatty esters in solvent-free medium. Enzyme and Microbial Technology, 2007. 41(6–7): p. 721-726. 36. Hernandez, C. E., H.-H. Chen, C.-I. Chang and T.-C. Huang, Direct lipase-catalyzed lipophilization of chlorogenic acid from coffee pulp in supercritical carbon dioxide. Industrial Crops and Products, 2009. 30(3): p.359-365. 37. Lorentz, C., A. Dulac, G. Pencreac’h, F. Ergan, P. Richomme and S. Soultani-Vigneron, Lipase-catalyzed synthesis of two new antioxidants: 4-O- and 3-O-palmitoyl chlorogenic acids. Biotechnology Letters, 2010. 32(12): p. 1955-1960. 38. Dastoli, F. R., N. A. Musto and S. Price, Reactivity of active sites of chymotrypsin suspended in an organic medium. Archives of Biochemistry and Biophysics, 1966. 115(1): p. 44-47. 39. Zaks, A. and A. M. Klibanov, Enzyme-catalyzed processes in organic solvents. Proceedings of the National Academy of Sciences, 1985. 82(10): p.3192-3196. 40. Laane, C., S. Boeren, K. Vos and C. Veeger, Rules for optimization of biocatalysis in organic solvents. Biotechnology and Bioengineering, 1987. 30(1): p. 81-87. 41. Klibanov, A. M., Why are enzymes less active in organic solvents than in water? Trends in Biotechnology, 1997. 15(3): p. 97-101. 42. Gupta, M. N. and I. Roy, Enzymes in organic media. European Journal of Biochemistry, 2004. 271(13): p. 2575-2583. 43. Suslick, K. S., Sonochemistry, in Kirk-Othmer Encyclopedia of Chemical Technology. 2000, John Wiley & Sons, Inc. 44. Chisti, Y., Sonobioreactors: using ultrasound for enhanced microbial productivity. Trends in Biotechnology, 2003. 21(2): p. 89-93. 45. 陳曉菁, 以超音波輔助酵素合成咖啡酸苯乙酯之最優化研究. 大葉大學生物產業科技學系博士班論文, 2010. 46. 蕭芳雯, 酵素催化合成 4''-OH 乙醯化白藜蘆醇-最適化與動力學探討. 中興大學化學工程學系碩士論文, 2011. 47. Santos, F. F. P., J. Q. Malveira, M. G. A. Cruz and F. A. N. Fernandes, Production of biodiesel by ultrasound assisted esterification of Oreochromis niloticus oil. Fuel, 2010. 89(2): p. 275-279. 48. Santos, F. F. P., L. J. B. L. Matos, S. Rodrigues and F. A. N. Fernandes, Optimization of the Production of Methyl Esters from Soybean Waste Oil Applying Ultrasound Technology. Energy & Fuels, 2009. 23(8): p. 4116-4120. 49. Ji, J., J. Wang, Y. Li, Y. Yu and Z. Xu, Preparation of biodiesel with the help of ultrasonic and hydrodynamic cavitation. Ultrasonics, 2006. 44, Supplement(0): p. e411-e414. 50. Martins, A. B., N. G. Graebin, A. S. G. Lorenzoni, R. Fernandez-Lafuente, M. A. Z. Ayub and R. C. Rodrigues, Rapid and high yields of synthesis of butyl acetate catalyzed by Novozym 435: Reaction optimization by response surface methodology. Process Biochemistry, 2011. 46(12): p. 2311-2316. 51. Martins, A. B., M. F. Schein, J. L. R. Friedrich, R. Fernandez-Lafuente, M. A. Z. Ayub and R. C. Rodrigues, Ultrasound-assisted butyl acetate synthesis catalyzed by Novozym 435: Enhanced activity and operational stability. Ultrasonics Sonochemistry, 2013. 20(5): p. 1155-1160. 52. Xiao, Y.-m., Q. Wu, Y. Cai and X.-f. Lin, Ultrasound-accelerated enzymatic synthesis of sugar esters in nonaqueous solvents. Carbohydrate Research, 2005. 340(13): p. 2097-2103. 53. Bezerra, M. A., R. E. Santelli, E. P. Oliveira, L. S. Villar and L. A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 2008. 76(5): p. 965-977.
摘要: 綠原酸(chlorogenic acid)可被當為有機相中之抗氧化劑,但綠原酸在有機相的溶解度較差,因此提高綠原酸的親脂性為本文研究的方向。 本實驗分成兩部分 第一部分以綠原酸當成酸和辛醇(ocatanol)來進行酯化反,應生成綠原酸酯,實驗探討反應時間(12h ~ 36h)、酵素用量(10 ~ 50mg)及超音波功率(90 ~ 150W)對綠原酸轉化率之影響,結果顯示反應時間、酵素用量對於綠原酸的轉化率皆有顯著影響。以三階層三變數之 Box-Behnken design (BBD)及反應曲面法探討綠原酸酯化之轉化率,結果顯示最適化合成反應條件為反應時間12h,酵素用量 50mg 及功率 120W,此條件下所得到綠原酸轉化率為 95.3%。 第二部分以綠原酸當醇並和辛酸(octanoic acid)進行反應並以固定化酵素Novozyme 435 催化合成綠原酸酯,在使用溶劑 2M2B 情況下進行合成。實驗選取三個反應因素因子莫爾數比 (綠原酸比辛酸)、酵素用量、反應時間。其中莫爾數比及酵素用量皆會對轉換率產生極大影響。再以三階層三變數之 Box-Behnken design (BBD)及反應曲面法探討綠原酸酯化之轉化率,分析對合成綠原酸酯的影響。實驗結果最適化條件為:莫爾數比 1:300、酵素用量 140mg 及反應天數為 2 天時,可得到綠原酸酯轉化率為 36.5%。 關鍵字:脂解酵素、反應曲面法、綠原酸、最適化、酯化反應、酵素合成
Chlorogenic acid is usually used as antioxidants in the organic phase; however, its low solubility causes a problem when applied in industry. To increase the lipophilic property of chlorogenic acid is the primary aim in this study. This study is divided into two parts. In the first part, chlorogenic acid is used as an acid and octanol was employed as alcohol in the esterification reaction to produce chlorogenic acid ester. Factors such as reaction time (12-36 h), enzyme amount (10-50 mg) and power (90-150 W) were studied. The results show that the reaction time and the enzyme amount have the most significant effect on the conversion of chlorogenic acid. The 3-level-3-factor Box-Behnken design (BBD) was applied to optimize the reaction conversion. The optimal reaction conditions are as follows: reaction time 12 h, enzyme amount 50mg, and ultrasound power of 120W. Under this condition, an esterification conversion of 95.3% can be reached. In part two, chlorogenic acid is employed as an alcohol and octanoic acid was used as the acid in the esterification reaction to produce chlorogenic acid ester. 2-methyl-2-butanol (2M2B) is chosen as the solvent. Box-Behnken design was adopted to evaluate the effect of three different parameters, i.e., molar ratio (1:100-1:300), enzyme amount (20-140mg) and reaction time (1-3day). The results show that the molar ratio and the enzyme amount have the most significant effect on chlorogenic acid conversion. By ridge max analysis, the optimal reaction conditions were found as follows: molar ratio 1:348.5, enzyme amount 159.6 mg, and reaction time 2.19 days. Under this condition, the highest conversion of 36.8%±0.8 can be obtained. Keywords: Lipase、response surface methodology、chlorogenic acid、optimal、esterification、enzymatic synthesis
URI: http://hdl.handle.net/11455/91491
其他識別: U0005-2805201516440800
文章公開時間: 10000-01-01
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.