Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91493
標題: 以不同酸液及陽極材料進行通孔電鍍
Through-Hole Filling with Copper Electroplating by Using Different Acids and Anode Materials
作者: Yu-Tien Lin
林宇恬
關鍵字: Through-hole filing
Copper electroplating
Dimensionally anode
通孔電鍍
電鍍銅
尺寸安定性陽極
引用: 1. Allen, J.B. and R.F. Larry, Electrochemical methods: fundamentals and applications. Department of Chemistry and Biochemistry University of Texas at Austin, John Wiley & Sons, Inc, 2001: p. 156-176. 2. 胡啟章, 電化學原理與方法. 2002, 五南圖書出版股份有限公司. 3. Nagy, Z., et al., Chloride ion catalysis of the copper deposition reaction. Journal of The Electrochemical Society, 1995. 142(6): p. L87-L89. 4. Soares, D.M., et al., Copper ion reduction catalyzed by chloride ions. Journal of Electroanalytical Chemistry, 2002. 532(1): p. 353-358. 5. Dow, W.-P., et al., Influence of convection-dependent adsorption of additives on microvia filling by copper electroplating. Journal of The Electrochemical Society, 2005. 152(6): p. C425-C434. 6. Dow, W.-P., et al., Influence of molecular weight of polyethylene glycol on microvia filling by copper electroplating. Journal of The Electrochemical Society, 2005. 152(11): p. C769-C775. 7. Shao, W., G. Pattanaik, and G. Zangari, Influence of chloride anions on the mechanism of copper electrodeposition from acidic sulfate electrolytes. Journal of The Electrochemical Society, 2007. 154(4): p. D201-D207. 8. Yokoi, M., S. Konishi, and T. Hayashi, Adsorption behavior of polyoxyethyleneglycole on the copper surface in an acid copper sulfate bath. Denki Kagaku oyobi Kogyo Butsuri Kagaku, 1984. 52(4): p. 218-223. 9. Kelly, J.J. and A.C. West, Copper deposition in the presence of polyethylene glycol I. Quartz crystal microbalance study. Journal of The Electrochemical Society, 1998. 145(10): p. 3472-3476. 10. Feng, Z.V., X. Li, and A.A. Gewirth, Inhibition Due to the Interaction of Polyethylene Glycol, Chloride, and Copper in Plating Baths:  A Surface-Enhanced Raman Study. The Journal of Physical Chemistry B, 2003. 107(35): p. 9415-9423. 11. Xie, B.-G., et al., In situ monitoring of additives in copper plating baths by cyclic voltammetric stripping with a microelectrode. Journal of The Electrochemical Society, 2007. 154(10): p. D516-D519. 12. Chang, S.-C., et al., Wetting effect on gap filling submicron damascene by an electrolyte free of levelers. Journal of Vacuum Science & Technology B, 2002. 20(4): p. 1311-1316. 13. Healy, J.P., D. Pletcher, and M. Goodenough, The chemistry of the additives in an acid copper electroplating bath: Part II. The instability 4, 5-dithiaoctane-1, 8-disulphonic acid in the bath on open circuit. Journal of Electroanalytical Chemistry, 1992. 338(1): p. 167-177. 14. Mattsson, E. and J.M. Bockris, Galvanostatic studies of the kinetics of deposition and dissolution in the copper+ copper sulphate system. Trans. Faraday Soc., 1959. 55: p. 1586-1601. 15. Dow, W.-P. and H.-S. Huang, Roles of chloride ion in microvia filling by copper electrodeposition i. studies using sem and optical microscope. Journal of The Electrochemical Society, 2005. 152(2): p. C67-C76. 16. Dow, W.-P., Y.-D. Chiu, and M.-Y. Yen, Microvia filling by cu electroplating over a au seed layer modified by a disulfide. Journal of The Electrochemical Society, 2009. 156(4): p. D155-D167. 17. Tu, H., et al., In situ STM of 3-mercaptopropanesulfonate Adsorbed on Pt (111) Electrode and its Effect on the Electrodeposition of Copper. Journal of The Electrochemical Society, 2010. 157(4): p. D206-D210. 18. Kim, S.-K., D. Josell, and T.P. Moffat, Cationic surfactants for the control of overfill bumps in Cu superfilling. Journal of The Electrochemical Society, 2006. 153(12): p. C826-C833. 19. Gomma, G.K., Effect of azole compounds on corrosion of copper in acid medium. Materials Chemistry and Physics, 1998. 56(1): p. 27-34. 20. Kellya, J.J. and A.C. West, Leveling of 200 nm features by organic additives. Electrochemical and Solid-State Letters, 1999. 2(11): p. 561-563. 21. Taephaisitphongse, P., Y. Cao, and A.C. West, Electrochemical and fill studies of a multicomponent additive package for copper deposition. Journal of The Electrochemical Society, 2001. 148(7): p. C492-C497. 22. Kondo, K., et al., Copper damascene electrodeposition and additives. Journal of Electroanalytical Chemistry, 2003. 559: p. 137-142. 23. Dow, W.-P. and C.-W. Liu, Evaluating the filling performance of a copper plating formula using a simple galvanostat method. Journal of The Electrochemical Society, 2006. 153(3): p. C190-C194. 24. Bielski, B.H., G.G. Shiue, and S. Bajuk, Reduction of nitro blue tetrazolium by CO2-and O2-radicals. The Journal of Physical Chemistry, 1980. 84(8): p. 830-833. 25. Umemoto, K. and N. Okamura, Reaction of hydroxide ion with electron acceptors in dimethyl sulfoxide. Bulletin of the Chemical Society of Japan, 1986. 59(10): p. 3047-3052. 26. Umemoto, K., Electrochemical studies of the reduction mechanism of tetrazolium salts and formazans. Bulletin of the Chemical Society of Japan, 1989. 62(12): p. 3783-3789. 27. Umemoto, K., Reduction mechanism of 2, 3, 5-triphenyltetrazolium chloride and 1, 3, 5-triphenylformazan. Bulletin of the Chemical Society of Japan, 1985. 58(7): p. 2051-2055. 28. Dow, W.-P., et al., Through-hole filling by copper electroplating using a single organic additive. Electrochemical and Solid-State Letters, 2011. 14(1): p. D13-D15. 29. Chen, C.-H., et al., Effects of supporting electrolytes on copper electroplating for filling through-hole. Electrochimica Acta, 2011. 56(17): p. 5954-5960. 30. Lin, G.-Y., et al., Characterization of through-hole filling by copper electroplating using a tetrazolium salt inhibitor. Journal of The Electrochemical Society, 2013. 160(12): p. D3028-D3034. 31. Yan, J.-J., et al., Effects of organic acids on through-hole filling by copper electroplating. Electrochimica Acta, 2013. 109: p. 1-12. 32. Lin, Y.-T., et al., Through-Hole Filling in a Cu Plating Bath with Functional Insoluble Anodes and Acetic Acid as a Supporting Electrolyte. Journal of The Electrochemical Society, 2013. 160(12): p. D3149-D3153. 33. Deng, S., X. Li, and H. Fu, Nitrotetrazolium blue chloride as a novel corrosion inhibitor of steel in sulfuric acid solution. Corrosion Science, 2010. 52(11): p. 3840-3846. 34. Tezcan, H. and E. Uzluk, Electrochemical studies of bis [1-substituted (–NO2,–COOH,–Cl,–Br) phenyl-3, 5-diphenylformazanato] nickel (II) complexes. Dyes and Pigments, 2008. 77(3): p. 635-645. 35. 王美齡, 尺寸安定性陽極於填孔電鍍之應用. 中興大學化學工程學系所學位論文, 2011: p. 1-116. 36. 楊建軍 and 林世民, <不溶性陽極在填孔電鍍應用中之特性.pdf>. 電路板會刊, 2008. 41. 37. Karuppiah, M.T. and G.B. Raju, Anodic degradation of Cl reactive blue 221 using graphite and IrO2/TaO2/RuO2 coated titanium electrodes. Industrial & Engineering Chemistry Research, 2009. 48(4): p. 2149-2156. 38. 黃運濤 and 彭喬, 鈦基金屬氧化物陽極的研究進展. 全面腐蝕控制, 2006. 20(1): p. 10-12. 39. Xu, L., Y. Xin, and J. Wang, A comparative study on IrO2–Ta2O5 coated titanium electrodes prepared with different methods. Electrochimica Acta, 2009. 54(6): p. 1820-1825. 40. Fierro, S. and C. Comninellis, Kinetic study of formic acid oxidation on Ti/IrO 2 electrodes prepared using the spin coating deposition technique. Electrochimica Acta, 2010. 55(23): p. 7067-7073. 41. 汪建民, 材料分析. 1998: 中國材料科學學會發行. 42. 羅吉宗, 薄膜科技與應用. 2009: 全華圖書. 43. 嚴之君, 填充通孔之電鍍銅配方的開發. 中興大學化學工程學系所學位論文, 2013: p. 1-91. 44. Rapta, P., et al., Radical intermediates in the redox reactions of tetrazolium salts in aprotic solvents (cyclovoltammetric, EPR and UV-VIS study). Free Radic Res, 1994. 20(2): p. 71-82. 45. Kovács, A., et al., Radiolytic reactions of nitro blue tetrazolium under oxidative and reductive conditions: a pulse radiolysis study. Radiation Physics and Chemistry, 1999. 55(5): p. 795-798. 46. Kovács, A., et al., Aqueous-ethanol nitro blue tetrazolium solutions for high dose dosimetry. Radiation Physics and Chemistry, 1999. 55(5): p. 799-803. 47. Kozicki, M. and E. Sąsiadek, UV‐assisted screen‐printing of flat textiles. Coloration Technology, 2012. 128(4): p. 251-260. 48. Tezcan, H., H. Şenöz, and N. Tokay, Spectral and electrochemical behavior of 1-[(NO2, COOH)-substituted phenyl]-3,5-diphenylformazans. Monatshefte für Chemie - Chemical Monthly, 2012. 143(4): p. 579-588. 49. Roelfs, B., et al., Filling through holes and blind microvias with copper using reverse pulse plating and insoluble anodes. Circuit World, 2012. 38(3): p. 113-123. 50. Neto, S.A. and A. De Andrade, Electrooxidation of glyphosate herbicide at different DSA® compositions: pH, concentration and supporting electrolyte effect. Electrochimica Acta, 2009. 54(7): p. 2039-2045. 51. Tahar, N.B. and A. Savall, Electrochemical removal of phenol in alkaline solution. Contribution of the anodic polymerization on different electrode materials. Electrochimica Acta, 2009. 54(21): p. 4809-4816. 52. Fierro, S., et al., Investigation of formic acid oxidation on Ti/IrO2 electrodes. Electrochimica Acta, 2009. 54(7): p. 2053-2061. 53. Gil, H., A. Echavarria, and F. Echeverría, Electrochemical reduction modeling of copper oxides obtained during in situ and ex situ conditions in the presence of acetic acid. Electrochimica Acta, 2009. 54(20): p. 4676-4681. 54. Hai, N.T., K. Wandelt, and P. Broekmann, Stable anion–cation layers on Cu (111) under reactive conditions. The Journal of Physical Chemistry C, 2008. 112(27): p. 10176-10186. 55. Dosovitskiy, G., et al., Thermal expansion of Ni–W, Ni–Cr, and Ni–Cr–W alloys between room temperature and 800 C. International Journal of Thermophysics, 2009. 30(6): p. 1931-1937.
摘要: 近年來,隨著電子產品小型化的趨勢,輕薄短小已經成為電子元件發展的方向,為了達到這個目標,電子元件線寬距離縮小與高密度互連(High Density Interconnection, HDI)的技術蓬勃發展。晶片封裝技術也將於二維空間連結轉向三維立體堆疊技術。然而,在電鍍通孔方面,因為要求體積小,作為訊息傳遞通道的孔洞也隨之縮小,導致深寬比增加,使得電鍍之電力線在孔中與孔口處分布不均,增加了超級填孔(Super-filling)的困難度。為此,許多人在鍍液中添加了許多化學添加劑,但是添加越多的添加劑也造成電鍍機制變得更加複雜。 過去工業上常使用可溶性陽極來進行電鍍銅,但是可溶性陽極因為自身尺寸不穩定,以至於電力線分布不均勻、鍍膜厚度難以控制等問題產生,造成槽液老化,而且嚴重影響到產品的信賴度,因為上述種種原因,工業界逐漸以不溶性陽極取代可溶性陽極。為了探討尺寸安定性陽極與可溶性陽極對填孔效果的影響,以及陽極過電壓對添加劑的作用,本研究同時利用傳統可溶性陽極,例如:磷銅片,與以金屬鈦為基材,外層塗佈氧化銥與氧化鉭的尺寸安定性陽極進行實驗。 傳統電鍍通孔配方主要以硫酸作為支撐性電解質,搭配不同有機添加劑進行銅電鍍。為了研究搭配不同陽極材料之酸效應,本研究利用乙酸取代硫酸作為支撐性電解質進行填孔電鍍,並發現當利用乙酸搭配尺寸安定行陽極進行電鍍銅製程時,可以得到較佳的填孔效果。
Nowadays, the contact distance between electronic devices has become much shorter with the trend of electronic product miniaturization. To achieve this goal, Electronic devices that have narrow line widths and high density interconnect(HDI) are being vigorously developed. IC chip packaging will benefit from two-dimensional connection turning towards three-dimensional stacking technology. However, the volume shrinkage in electronic devices results in a high aspect of conducting through-holes that are used as the message channels. The high aspect ratio through hole renders current density distribution in the hole and at the hole mouth to be not uniform during copper plating which increases difficulty in copper superfilling of through holes. For this reason, many people added chemical additives in the copper plating solution, but the more additives in the plating solution, the more complicated mechanism in the copper plating. Soluble anode is usually applied to copper electroplating in a traditional plating bate. However, soluble anode has some disadvantages, such as surface area change with time, which causes non-uniform distribution of current density and uneven plated film thickness. This may affect product reliability and stability of the plating bath. Because of the disadvantage of soluble anodes, functional insoluble anode is used to substitute for the soluble anode in industry. In order to discuss the influence on the filling performance of different anode materials, conventional soluble anodes (i.e., P-doped Cu) and functional insoluble anodes that were activated with iridium-based mixed metal oxides on Ti meshes were used during the electroplating experiment. Through-hole (TH) filling of a printed circuit board (PCB) was conducted with a copper electroplating solution by using sulfuric acid as a supporting electrolyte. To investigate the effect of acids with different anode materials, the acetic acid electrolyte was used instead of sulfuric acid for the copper electroplating. The TH filing performance of the copper electroplating solution was significantly enhanced when acetic acid electrolyte and insoluble anodes were used simultaneously in the copper electroplating bath.
URI: http://hdl.handle.net/11455/91493
其他識別: U0005-0408201511081200
文章公開時間: 2018-08-07
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.