Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorYu-Chen Tsaien_US
dc.contributor.authorChien-Nung Kuoen_US
dc.identifier.citation1. Clark, L.C. and C. Lyons, ELECTRODE SYSTEMS FOR CONTINUOUS MONITORING IN CARDIOVASCULAR SURGERY. Annals of the New York Academy of Sciences, 1962. 102(1): p. 29-45. 2. Compton, T., Receptors and immune sensors: the complex entry path of human cytomegalovirus. Trends in Cell Biology, 2004. 14(1): p. 5-8. 3. Liu, C., et al., Immobilized multi-species based biosensor for rapid biochemical oxygen demand measurement. Biosensors and Bioelectronics, 2011. 26(5): p. 2074-2079. 4. 5. 許嘉伊, 全球特用酵素市場分析. 台灣經濟研究院生物科技產業中心, 2007. 6. 洪爭坊、郭肇凱、張正英, 淺談酵素. 台中區農情月刊. 7. Barcelo, D., et al., Techniques and instrumentation in analytical chemistry. Techniques and instrumentation in analytical chemistry, 1997. 19. 8. Azevedo, A.M., et al., Horseradish peroxidase: a valuable tool in biotechnology, in Biotechnology Annual Review. 2003, Elsevier. p. 199-247. 9. Paul, K., Die isolierung von meerrettichperoxydase. Acta Chem. Scand, 1958. 12(6). 10. Shannon, L.M., E. Kay, and J.Y. Lew, Peroxidase isozymes from horseradish roots I. Isolation and physical properties. Journal of Biological Chemistry, 1966. 241(9): p. 2166-2172. 11. Veitch, N.C., Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry, 2004. 65(3): p. 249-259. 12. Sassolas, A., L.J. Blum, and B.D. Leca-Bouvier, Immobilization strategies to develop enzymatic biosensors. Biotechnology advances, 2012. 30(3): p. 489-511. 13. Cabral, J. and J. Kennedy, Covalent and coordination immobilization of proteins. Bioprocess technology, 1991. 14: p. 73. 14. Wilson, G.S. and R. Gifford, Biosensors for real-time in vivo measurements. Biosensors and Bioelectronics, 2005. 20(12): p. 2388-2403. 15. Su, L., et al., Microbial biosensors: A review. Biosensors and Bioelectronics, 2011. 26(5): p. 1788-1799. 16. Grieshaber, D., et al., Electrochemical biosensors-Sensor principles and architectures. Sensors, 2008. 8(3): p. 1400-1458. 17. Thevenot, D.R., et al., Electrochemical biosensors: recommended definitions and classification. Biosensors and Bioelectronics, 2001. 16(1–2): p. 121-131. 18. Zhang, Y. and S. Tadigadapa, Calorimetric biosensors with integrated microfluidic channels. Biosensors and Bioelectronics, 2004. 19(12): p. 1733-1743. 19. Endo, T., et al., Label-Free Detection of Peptide Nucleic Acid−DNA Hybridization Using Localized Surface Plasmon Resonance Based Optical Biosensor. Analytical Chemistry, 2005. 77(21): p. 6976-6984. 20. Polla, D. and L. Francis, Ferroelectric thin films in micro-electromechanical systems applications. MRS bulletin, 1996. 21(07): p. 59-65. 21. Su, L., et al., Detection of cancer biomarkers by piezoelectric biosensor using PZT ceramic resonator as the transducer. Biosensors and Bioelectronics, 2013. 46: p. 155-161. 22. Dixon, B.M., J.P. Lowry, and R.D. O''Neill, Characterization in vitro and in vivo of the oxygen dependence of an enzyme/polymer biosensor for monitoring brain glucose. Journal of Neuroscience Methods, 2002. 119(2): p. 135-142. 23. Xuejiang, W., et al., Conductometric nitrate biosensor based on methyl viologen/NafionR/nitrate reductase interdigitated electrodes. Talanta, 2006. 69(2): p. 450-455. 24. Setzu, S., et al., Porous silicon‐based potentiometric biosensor for triglycerides. physica status solidi (a), 2007. 204(5): p. 1434-1438. 25. Dehnicke, K., The Chemistry of Cyano Complexes of the Transition Metals. Organometallic Chemistry - A Series of Monographs. Von A. G. Sharpe. . Angewandte Chemie, 1976. 88(22): p. 774-774. 26. Wu, J. and Y. Qu, Mediator-free amperometric determination of glucose based on direct electron transfer between glucose oxidase and an oxidized boron-doped diamond electrode. Analytical and bioanalytical chemistry, 2006. 385(7): p. 1330-1335. 27. Wu, W.-C., J.-L. Huang, and Y.-C. Tsai, Direct electron transfer and biosensing of glucose oxidase immobilized at multiwalled carbon nanotube-alumina-coated silica modified electrode. Materials Science and Engineering: C, 2012. 32(4): p. 983-987. 28. Lee, C.-A. and Y.-C. Tsai, Preparation of multiwalled carbon nanotube-chitosan-alcohol dehydrogenase nanobiocomposite for amperometric detection of ethanol. Sensors and Actuators B: Chemical, 2009. 138(2): p. 518-523. 29. Huang, J.-L. and Y.-C. Tsai, Direct electrochemistry and biosensing of hydrogen peroxide of horseradish peroxidase immobilized at multiwalled carbon nanotube/alumina-coated silica nanocomposite modified glassy carbon electrode. Sensors and Actuators B: Chemical, 2009. 140(1): p. 267-272. 30. Tsai, Y.-C., S.-Y. Chen, and C.-A. Lee, Amperometric cholesterol biosensors based on carbon nanotube–chitosan–platinum–cholesterol oxidase nanobiocomposite. Sensors and Actuators B: Chemical, 2008. 135(1): p. 96-101. 31. Zhu, M., Z. Jiang, and W. Jing, Fabrication of polypyrrole–glucose oxidase biosensor based on multilayered interdigitated ultramicroelectrode array with containing trenches. Sensors and Actuators B: Chemical, 2005. 110(2): p. 382-389. 32. Zhao, J., D. Wu, and J. Zhi, A novel tyrosinase biosensor based on biofunctional ZnO nanorod microarrays on the nanocrystalline diamond electrode for detection of phenolic compounds. Bioelectrochemistry, 2009. 75(1): p. 44-49. 33. Saleh Ahammad, A., Hydrogen peroxide biosensors based on horseradish peroxidase and hemoglobin. Biosens Bioelectron S, 2013. 9. 34. Killard, A.J., et al., Antibodies: production, functions and applications in biosensors. TrAC Trends in Analytical Chemistry, 1995. 14(6): p. 257-266. 35. Mistry, K.K., et al., A review on amperometric-type immunosensors based on screen-printed electrodes. Analyst, 2014. 139(10): p. 2289-2311. 36. Fowler, J.M., et al., Chapter 5 - Recent developments in electrochemical immunoassays and immunosensors, in Electrochemical Sensors, Biosensors and their Biomedical Applications, X. Zhang, H. Ju, and J. Wang, Editors. 2008, Academic Press: San Diego. p. 115-143. 37. 郭晉川, Fe3O4 奈米微粒修飾性網印碳電極於葡萄糖生物感測器之研究,國立雲林科技大學化學工程研究所,碩士論文. 2006. 38. Chaubey, A. and B.D. Malhotra, Mediated biosensors. Biosensors and Bioelectronics, 2002. 17(6–7): p. 441-456. 39. Lisdat, F. and D. Schafer, The use of electrochemical impedance spectroscopy for biosensing. Analytical and Bioanalytical Chemistry, 2008. 391(5): p. 1555-1567. 40. Zoski, C.G., Handbook of electrochemistry. 2007: Elsevier. 41. Xie, X., D. Stueben, and Z. Berner, The application of microelectrodes for the measurements of trace metals in water. Analytical letters, 2005. 38(14): p. 2281-2300. 42. Montenegro, M.I., et al., Microelectrodes: theory and applications. Vol. 197. 1991: Springer. 43. Aoki, A., T. Matsue, and I. Uchida, Electrochemical response at microarray electrodes in flowing streams and determination of catecholamines. Analytical Chemistry, 1990. 62(20): p. 2206-2210. 44. Chidsey, C.E., et al., Micrometer-spaced platinum interdigitated array electrode: fabrication, theory, and initial use. Analytical Chemistry, 1986. 58(3): p. 601-607. 45. Seddon, B.J., H.H. Girault, and M.J. Eddowes, Interdigitated microband electrodes: chronoamperometry and steady state currents. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989. 266(2): p. 227-238. 46. Postlethwaite, T.A., et al., Interdigitated Array Electrode as an Alternative to the Rotated Ring−Disk Electrode for Determination of the Reaction Products of Dioxygen Reduction. Analytical Chemistry, 1996. 68(17): p. 2951-2958. 47. Thomas, J.H., et al., Microbead-based electrochemical immunoassay with interdigitated array electrodes. Analytical Biochemistry, 2004. 328(2): p. 113-122. 48. Yang, L., Y. Li, and G.F. Erf, Interdigitated Array Microelectrode-Based Electrochemical Impedance Immunosensor for Detection of Escherichia coli O157:H7. Analytical Chemistry, 2004. 76(4): p. 1107-1113. 49. Senior, J., et al., The evaluation of interdigitated array electrodes for measurement of catecholamines and indoleamines. Journal of Pharmaceutical and Biomedical Analysis, 2001. 24(5–6): p. 843-848. 50. Kurita, R., et al., Fabrication and electrochemical properties of an interdigitated array electrode in a microfabricated wall-jet cell. Sensors and Actuators B: Chemical, 2000. 71(1–2): p. 82-89. 51. Blanchard, R.M., A.R. Noble-Luginbuhl, and R.G. Nuzzo, Fabrication of an Interdigitated Array Electrode on ZnSe and Its Application to Electrooptical Measurements Using FT-IR Spectroscopy. Analytical Chemistry, 2000. 72(7): p. 1365-1372. 52. Niwa, O., et al., Subnanoliter Volume Wall-Jet Cells Combined with Interdigitated Microarray Electrode and Enzyme Modified Planar Microelectrode. Analytical Chemistry, 2000. 72(5): p. 949-955. 53. Nagale, M.P. and I. Fritsch, Individually Addressable, Submicrometer Band Electrode Arrays. 1. Fabrication from Multilayered Materials. Analytical Chemistry, 1998. 70(14): p. 2902-2907. 54. Compton, R.G., et al., Design, fabrication, characterisation and application of nanoelectrode arrays. Chemical Physics Letters, 2008. 459(1–6): p. 1-17. 55. Huang, X.J., A.M. O''Mahony, and R.G. Compton, Microelectrode arrays for electrochemistry: Approaches to fabrication. Small, 2009. 5(7): p. 776-788. 56. Fleischmann, M. and S. Pons, The behavior of microelectrodes. Analytical Chemistry, 1987. 59(24): p. 1391A-1399A. 57. Forster, R.J., Microelectrodes: new dimensions in electrochemistry. Chemical Society Reviews, 1994. 23(4): p. 289-297. 58. Heinze, J., Ultramicroelectrodes in electrochemistry. Angewandte Chemie International Edition in English, 1993. 32(9): p. 1268-1288. 59. Fletcher, S. and M.D. Horne, Random assemblies of microelectrodes (RAM™ electrodes) for electrochemical studies. Electrochemistry communications, 1999. 1(10): p. 502-512. 60. Ecken, H., et al., 64-Channel extended gate electrode arrays for extracellular signal recording. Electrochimica Acta, 2003. 48(20–22): p. 3355-3362. 61. Connolly, P., et al., Microelectronic and nanoelectronic interfacing techniques for biological systems. Sensors and Actuators B: Chemical, 1992. 6(1–3): p. 113-121. 62. Heer, F., et al., CMOS microelectrode array for the monitoring of electrogenic cells. Biosensors and Bioelectronics, 2004. 20(2): p. 358-366. 63. Bai, Q. and K.D. Wise, Single-unit neural recording with active microelectrode arrays. Biomedical Engineering, IEEE Transactions on, 2001. 48(8): p. 911-920. 64. Iwasaki, Y. and M. Morita, Electrochemical measurements with interdigitated array microelectrodes. Current separations, 1995. 14(1): p. 2-8. 65. Feeney, R. and S.P. Kounaves, Microfabricated ultramicroelectrode arrays: Developments, advances, and applications in environmental analysis. Electroanalysis, 2000. 12(9): p. 677-684. 66. Barton, A.C., et al., Sonochemically fabricated microelectrode arrays for biosensors offering widespread applicability: Part I. Biosensors and Bioelectronics, 2004. 20(2): p. 328-337. 67. Cugnet, C., et al., A novel microelectrode array combining screen-printing and femtosecond laser ablation technologies: Development, characterization and application to cadmium detection. Sensors and Actuators B: Chemical, 2009. 143(1): p. 158-163. 68. Martin, C.R., Nanomaterials--a membrane-based synthetic approach, 1994, Science. 69. 70. Evans, T.C., Effects of hydrogen peroxide produced in the medium by radiation on spermatozoa of Arbacia punctulata. The Biological Bulletin, 1947. 92(2): p. 99-109. 71. Hoffmann, M.E., A.C. Mello-Filho, and R. Meneghini, Correlation between cytotoxic effect of hydrogen peroxide and the yield of DNA strand breaks in cells of different species. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1984. 781(3): p. 234-238. 72. Kellogg, E.W. and I. Fridovich, Superoxide, hydrogen peroxide, and singlet oxygen in lipid peroxidation by a xanthine oxidase system. Journal of Biological Chemistry, 1975. 250(22): p. 8812-8817. 73. Scandalios, J.G.e., Molecular Biology of Free Radical Scavenging Systems. New York : Cold Spring Harbor Laboratory Press. 74. Rodriguez, H., et al., Mapping of copper/hydrogen peroxide-induced DNA damage at nucleotide resolution in human genomic DNA by ligation-mediated polymerase chain reaction. Journal of Biological Chemistry, 1995. 270(29): p. 17633-17640. 75. Veal, E.A., A.M. Day, and B.A. Morgan, Hydrogen Peroxide Sensing and Signaling. Molecular Cell, 2007. 26(1): p. 1-14. 76. Wei, H. and E. Wang, Fe3O4 Magnetic Nanoparticles as Peroxidase Mimetics and Their Applications in H2O2 and Glucose Detection. Analytical Chemistry, 2008. 80(6): p. 2250-2254. 77. Yang, X., Y. Guo, and Z. Mei, Chemiluminescent determination of H2O2 using 4-(1,2,4-triazol-1-yl)phenol as an enhancer based on the immobilization of horseradish peroxidase onto magnetic beads. Analytical Biochemistry, 2009. 393(1): p. 56-61. 78. Pena, R., et al., Flow injection amperometric determination of hydrogen peroxide in household commercial products with a ruthenium oxide hexacyanoferrate modified electrode. Microchimica Acta, 2009. 166(3-4): p. 277-281. 79. Ahammad, A., S. Sarker, and J.-J. Lee, Immobilization of Horseradish Peroxidase onto a Gold-Nanoparticle-Adsorbed Poly (thionine) Film for the Construction of a Hydrogen Peroxide Biosensor. Journal of nanoscience and nanotechnology, 2011. 11(7): p. 5670-5675. 80. Sanford, A.L., et al., Voltammetric Detection of Hydrogen Peroxide at Carbon Fiber Microelectrodes. Analytical Chemistry, 2010. 82(12): p. 5205-5210. 81. Thiagarajan, S., B.-W. Su, and S.-M. Chen, Nano TiO2–Au–KI film sensor for the electrocatalytic oxidation of hydrogen peroxide. Sensors and Actuators B: Chemical, 2009. 136(2): p. 464-471. 82. del Campo, F.J., et al., Determination of heterogeneous electron transfer rate constants at interdigitated nanoband electrodes fabricated by an optical mix-and-match process. Sensors and Actuators B: Chemical, 2014. 194(0): p. 86-95. 83. Barnes, E.O., et al., Generator-collector double electrode systems: A review. Analyst, 2012. 137(5): p. 1068-1081. 84. Barnes, E.O., et al., Dual band electrodes in generator–collector mode: Simultaneous measurement of two species. Journal of Electroanalytical Chemistry, 2013. 703(0): p. 38-44. 85. Amatore, C., C. Sella, and L. Thouin, Electrochemical time-of-flight responses at double-band generator-collector devices under pulsed conditions. Journal of Electroanalytical Chemistry, 2006. 593(1–2): p. 194-202. 86. Brett, C.M.A. and M.M.P.M. Neto, Voltammetric studies and stripping voltammetry of Mn(II) at the wall-jet ring-disc electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989. 258(2): p. 345-355. 87. Brett, C.M.A., et al., The wall-jet ring-disc electrode: The measurement of homogeneous rate constants from steady state ring currents. Electroanalysis, 1991. 3(7): p. 631-636. 88. Compton, R.G., et al., Transient measurements at the wall-jet ring disc electrode. Journal of Applied Electrochemistry, 1992. 22(11): p. 1011-1016. 89. Cutress, I.J., et al., Dual-microdisk electrodes in transient generator–collector mode: Experiment and theory. Journal of Electroanalytical Chemistry, 2011. 655(2): p. 147-153. 90. Baur, J.E. and P.N. Motsegood, Diffusional interactions at dual disk microelectrodes: comparison of experiment with three-dimensional random walk simulations. Journal of Electroanalytical Chemistry, 2004. 572(1): p. 29-40. 91. Menshykau, D., et al., Current collection efficiency of micro- and nano-ring-recessed disk electrodes and of arrays of these electrodes. Sensors and Actuators B: Chemical, 2009. 138(1): p. 362-367. 92. Menshykau, D., et al., Microarrays of Ring-Recessed Disk Electrodes in Transient Generator-Collector Mode: Theory and Experiment. Analytical Chemistry, 2009. 81(22): p. 9372-9382. 93. Zhu, F., et al., A strategy for selective detection based on interferent depleting and redox cycling using the plane-recessed microdisk array electrodes. Electrochimica Acta, 2011. 56(24): p. 8101-8107.zh_TW
dc.description.abstract微電極本身因具有較小的電極尺寸、快速充電電雙層(double-layer)、降低歐姆電壓iR、增加訊號雜訊比(signal-to-noise ratio)和高質傳速率等特性,可用於電分析量測。本實驗微電極由西班牙國家高等科學研究委員會研究團隊所提供,指叉電極陣列使用產生-收集模式(generator-collector mode)比起產生電極可以放大電流訊號達到9.1倍且收集效率為0.97,將辣根過氧化酵素固定在指叉電極陣列上,加入過氧化氫後利用指叉電極陣列產生-收集模式來放大電流訊號,其線性範圍5μM-500μM,偵測極限1.22μM,靈敏度為0.6238 A / (M cm2),由干擾物測試證明指叉電極陣列感測器可避免抗壞血酸與尿酸的干擾。zh_TW
dc.description.abstractMicroelectrodes are electrode with characteristic dimensions on the micrometer scale. Faster double-layer charging, reduced ohmic loss, increased signal-to-noise ratio and high mass-transport rates have allowed them to revolutionize electroanalytical measurements. Hydrogen peroxide biosensors are fabricated by immobilization of horseradish peroxidase (HRP) onto the surface of interdigitated microband electrodes. The interdigitated microband electrode shows an amplification factor of ~9.1 with a collection efficiency of 0.97, demonstrating a high efficiency in generator-collector experiments. The resulting hydrogen peroxide biosensor exhibits a sensitivity of 0.6238 A M-1 cm-2, a detection limit of 1.22 μM, and a linear range of 5-500 μM. The performance of the proposed biosensor was evaluated with potential interferences such as ascorbic acid and uric acid.en_US
dc.description.tableofcontents摘要 i Abstract ii 總目錄 iii 表目錄 v 圖目錄 vi 第一章 緒論 1 1.1前言 1 1.2 酵素 2 1.2.1酵素簡介 2 1.2.2 辣根過氧化酵素 3 1.2.3 酵素固定化方法 5 1.3 生物感測器 8 1.3.1 生物感測器之基本結構與組成 8 1.3.2 酵素生物感測器 17 1.3.3 免疫生物感測器 19 1.4 電子傳遞物 20 1.5 電化學方法 21 1.5.1 交流阻抗法 21 1.5.2 循環伏安法 23 1.6 微電極 26 1.6.1 微電極種類 27 1.6.2 微電極特性 29 1.6.3 微電極偵測原理 30 1.6.4 微電極陣列 32 1.6.5 微電極製作方式 34 1.7 待測物簡介及文獻探討 37 1.7.1 過氧化氫 37 第二章 實驗方法與步驟 44 2.1 實驗藥品 44 2.2 實驗儀器 44 2.3 實驗步驟 45 2.3.1 指叉電極陣列製備方式 45 2.3.2 電極前處理 47 2.3.3 過氧化氫感測器之製備 47 第三章 結果與討論 49 3.1 指叉電極陣列表面形貌 49 3.2 微電極陣列之電化學行為 50 3.3 不同型態指叉電極陣列之電化學行為 51 3.4 以指叉電極陣列偵測過氧化氫 53 3.4.1 過氧化氫感測器之電化學行為探討 55 3.4.2 過氧化氫感測器之表面形貌探討 56 3.4.3 過氧化氫感測器最佳化探討 57 3.4.4 過氧化氫感測器之校正曲線 59 3.4.5 過氧化氫感測器之干擾物測試 60 3.4.6 過氧化氫感測器之穩定度測試 61 第四章 結論與未來展望 63 4.1結論 63 4.2未來展望 63 第五章 參考文獻 64zh_TW
dc.subjecthydrogen peroxideen_US
dc.titleMicroelectrode arrays for biosensor applicationen_US
dc.typeThesis and Dissertationen_US
Appears in Collections:化學工程學系所


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.