Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91515
標題: 以氧化鋅為中間層行玻璃表面金屬化
Using Zinc Oxide as Intermediate Layer for Glass Metallization
作者: Chi-Wen Cheng
鄭家雯
關鍵字: no
氧化鋅
摻鋁氧化鋅
玻璃金屬化
奈米銅觸媒
無電電鍍銅
引用: 1. H. Yoshiki, V. Alexandruk, K. Hashimoto, and A. Fujishima, “ElectrolessCopper Plating Using ZnO Thin Film Coated on a Glass Substrate. ” Journalof Electrochemical Society, 1994. 141(5): p. L56-L58. 2. H. Yoshiki, K. Hashimoto, and A. Fujishima,”Reaction Mechanism ofElectraless Metal Deposition Using ZnO Thin Film (I): Process of CatalystFormation. ” Journal of Electrochemical Society, 1995. 142(2): p. 428-432. 3. H. Yoshiki, K. Hashimoto, and A. Fujishima, “Adhesion Mechanism of Electroless Copper Film Formed on Ceramic Substrates Using ZnO Thin Film as an Intermediate Layer. ” Journal of Electrochemical Society, 1998. 145(5): p. 1430-1434. 4. R. D. Sun, D. A. Tryk, K. Hashimoto, and A. Fujishima, “Adhesion ofElectroless Deposited Cu on ZnO-Coated Glass Substrates: The Effect ofthe ZnO Surface Morphology. ” Journal of The Electrochemical Society, 1999.146(6): p. 2117-2122. 5. C.J. Brinker and G. W. Scherer, “Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing.” Academic Press: San Diego, CA 1990. 6. B. L. Cushing, V. L. Kolesnichenko, and C. J. O’Connor,“Recent advances in the liquidphase syntheses of inorganic nanoparticles”Chem. Rev., 2004, 104, p. 3893-3946. 7. G. Gasparro. J. Putz. D. Ganz, and M. A. Aegerter, “Sol. Energy Mater.“ Sol. Cell, 1997, 54, p.287-296. 8. J. H. Lee, K. H. Ko, and B. O. Park, “Electrical and Optical Properties of ZnO Transparent Conducting Films by the Sol–gel Method.”Journal of Crystal Growth, 2003. 247(1-2): p. 119-125. 9. Z. Yidong, F. Wenjun, Y. Fengling, Z. Zhi, and Z. Pingyu, “Effect of annealing emperature on the structural and optical properties of ZnO thin films prepared by sol–gel method.“Ionics, 2010. 16(9): p. 815-820. 10. C. Y. Tsay, K. S. Fan, C. Y. Chen, J. M. Wu, and C. M. Lei,“Effect of preheating process on crystallization and optical properties of sol-gel derived ZnO semiconductor thin films.“Journal of Electroceramics“, 2011. 26(1-4): p. 23-27. 11. S. A. Kamaruddin, K.Y. Chan, H. K. Yow, S. M. Zainizan, H. Saim, and D. Knipp, “Zinc oxide films prepared by sol–gel spin coating technique.” Applied Physics A, 2010. 104(1): p. 263-268. 12. L. Aiyun, Z. Jianqin, and W. Qinghai, “Structural and Optical Properties of Zno Thin Films Prepared by Different Sol-Gel Processes.“ Chemical Engineering Communications, 2010. 198(4): p. 494-503. 13. V. Musat, A.M. Rego, R. Monteiro, E. Fortunato,” Microstructure and gas-sensing properties of sol–gel ZnO thin films.“ Thin Solid Films, 2008. 516(7): p. 1512-1515. 14. T. Ghosh, M. Dutta, S. Mridha, and D. Basak,“Effect of Cu Doping in the Structural, Electrical, Optical, and Optoelectronic Properties of Sol-Gel ZnO Thin Films.“Journal of the Electrochemical Society, 2009. 156(4): p. H285-H289. 15. T. Ghosh, M. Dutta, S. Mridha, and D. Basak,”Effect of Cu Doping in the Structural, Electrical, Optical, and Optoelectronic Properties of Sol-Gel ZnO Thin Films.“Journal of the Electrochemical Society, 2009. 156(4): p. H285-H289. 16. L. H. Xu, X. Y. Li, Y. L. Chen, and F. Xu,“Structural and optical properties of ZnO thin films prepared by sol-gel method with different thickness.”Applied Surface Science, 2011. 257(9): p. 4031-4037. 17. J. H. Lee and B.O. Park, “Transparent conducting ZnO:Al, In and Sn thin films deposited by the sol–gel method”Thin Solid Films. 2003, 426, p.94-99. 18. N. R. Aghamalyan, E. A. Kafadaryan, R. K. Hovsepyan, and S. I. Petrasyan, Semicond. “Absorption and reflection analysis of transparent conductive Ga-doped ZnO films”Sci. Tech., 2005,20, p.80 19. P. M. R.Kumar, C. S. Kartha, K. P. Vijayakumar, T. Abe, Y. Kashiwaba, F. Singh, and D. A. Avasthi, “On the properties of indium doped ZnO thin films”Semicond. Sci. Tech., 2005,20, p.120-126. 20. M. J. A;aml and D.C. Cameron, “Preparation and properties of transparent conductive aluminum-doped zinc oxide thin films by sol-gel process”J. Vac. Sci. Technol., 2001, A19, p.1642 21. C.Delia, J.Altamirano, T. D. Gerardo, J. S. Sergio, J. S. Omar, and C. P. Rebeca, “Low-resistivity ZnO: F: Al transparent thin films”Solar Energy Mater. Solar Cell, 2004,82,p.35-43. 22. K. K. Kim, H. S. Kim, D. K. Hwang, J. H. Lim, and S. J. Park. “Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant”Appl. Phys. Lett., 2003,83, p.63-65. 23. L. L. Yang, Z. Z. Ye, L. P. Zhu, Y. J. Zneg, Y. F. Lu, B. H. Zhao “Fabrication of p-Type ZnO Thin Films via DC Reactive Magnetron Sputtering by Using Na as the Dopant Source - Springer”J.Electronic Materials . 2007, 36-4, p.498-501. 24. H. L. Hartnagel, A. L. Dawar, A. K. Jain, and C. Jagadish, “Semiconduction Transparent Thin Films.” Institute of Physics Publishing 1995. 25. 潘漢昌、蕭銘華、蘇建穎、蕭健男,”透明導電膜簡介”,科儀新知,2004,26, p.46. 26. 楊明輝,工業材料,1999,179, p.134-144. 27. U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M.A.Reshikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc,“ZnO Nanocluster as a Potential Catalyst for Dissociation of H 2 S Molecule” J. Appl. Phys., 2005, 98, 041301 28. S. Y. Lee and B.O. Park, “Electrical and optical properties of In2O3 –ZnO thin films prepared by sol–gel method”Thin Solid Films, 2005,484, p.184-187 29. 馬振基,”奈米材料科技原理與應用”,全華科技圖書,2003 30. 李傳宏、黃佩珍、盧成基、彭國光、徐文泰,”奈米材料-介觀化學世界”,工業材料2001,60 31. 賴炤銘,李錫隆,“奈米材料的特殊效應與應用”,Chemistry(The Chinese Chem.SOC., Taipei) December. 2003 Vol. 61, No. 4, p.585-597. 32. H. B. Weiser, Inorganic Colloid Chemistry-Volume : The Colloidal Elements. Braunworth & Co., 1933. 33. J. A. Creighton, “Ultraviolet-visible absorption spectra of the colloidal metallic elements.” Journal of the Chemical Society, Faraday Transactions, 1991. 87(24), p. 3881–3891. 34. H. H. Huang, Y. M. Kek, C. H. Chew, G. Q. Xu, P. S. Oh, and S. H. Tang, “Synthesis, Characterization, and Nonlinear Optical Properties of Copper Nanoparticles.” Langmuir, 1997. 13(2), p. 172-175. 35. H.Hirai, H. Wakabayashi, and M. Komiyama, “Preparation of Polymer-Protected” Colloidal Dispersions of Copper.” Bulletin of the Chemical Society of Japan, 1986. 59(2), p. 367-372. 36. A. C. Curtis, D. G. Duff, P. P. Edwards, D. A. Jefferson, B. F. G. Johnson, A. I. Kirkland, and A. S. Wallace,“ Preparation and Structural Characterization of an Unprotected Copper Sol. ” The Journal of Physical Chemistry, 1988. 92(8), p. 2270-2275. 37. P. N. Floriano, C. O. Noble, J. M. Schoonmaker, E. D. Poliakoff , and R. L. McCaarley,“Cu(0) Nanoparticles Derived from Poly(propylene imide) Dendrimer Complexes of Cu(Ⅱ ). ” Journal of the American Chemical Society, 2001. 123(43), p. 10545-10553. 38. S. Kapoor, R. Joshi, and T. Mukherjee,“Influence of I- Anions on the Formation and Stabilization of Copper Nanoparticles. ” Chemical Physics Letters, 2002. 354(5-6), p. 433-438. 39. Y. V. Bokshits, G. P. Shevchenko, A. N. Ponyavina, and S. K. Rakhmanov,“Formation of Silver and Copper Nanoparticles upon the Reduction of Their Poorly Soluble Precursors in Aqueous Solution.”COLLOID JOURNAL, 2004. 66(5), p. 517-522. 40. I. Langmuir, “The Constitution and Fundamental Properyies of Solids and Liquids. II. Liquids.” Journal of the American Chemical Society, 1917. 39(9), p. 1848-1906 41. K. B. Blodgett, “Films Built by Depositing Successive Monomolecular Layers on a Solid Surface.” Journal of the American Chemical Society, 1938.57(6), p. 1007-1022. 42. W. C. Bigelow, D. L. Pickett, and W.A. Zisman,” Oleophobic Monolayers:I. Films Adsorbed from Solution in Non-Polar Liquids.” Journal of Colloid Science, 1946. 1(6), p. 513–538. 43. A. Ulman, “Formation and Structure of Self-Assembles Monolayers.” Chemical Reviews, 1996. 96(4), p. 1533-1554. 44. R. G. Nuzzo, and D.L. Allara, “Adsorption of Bifunctional Organic Disulfides on Gold Surfaces.” Journal of the American Chemical Society, 1983. 105(13), p. 4481-4483. 45. 黃志瑋, “介電層表面修飾對有機蒸鍍薄膜形貌與其場效電晶體性能影響研究.” 國立中央大學化學系碩士論文, 民國97 年. 46. E. Ouellet, C. W. T. Yang, T. Lin, L. L. Yang, and E. T. Lagally,” Novel Carboxyl-Amine Bonding Methods for Poly(dimethylsiloxane)-Based Devices.” Langmuir, 2010. 26(14), p. 11609-11614. 47. H. Zhang, Z.Jiang, X. Liu, and J. Lian,” An Investigation of smooth nanosized copper films on glass substrate by improved electroless plating.” Surface Review and Letters, 2006. 13(4), p. 471–478. 48. Y. A. Yang, Y. B.Wei, B. H. Loo, and J. N. Yao,” Electroless copper plating on a glass substrate coated with ZnO film under UV illumination.” Journal of Electroanalytical Chemistry, 1999. 462(2), p. 259–263. 49. 方景禮, “電鍍配合物-理論與運用”,傳勝出版社, 民國97 年. 50. 逢板哲爾,“化學反應製造金屬薄膜”,表面處理工業雜誌,第3期民國85年 51. 張良中,“非導體表面之金屬化”,工業材料,第112期,民國85年 52. 莊萬發,“無電解鍍金-化學鍍金技術”,復漢出版社,民國85年 53. M. Paunovic, “Electrochemical Aspects of Electroless Deposition of Metals”, Plating, 1968, 55, p.1161. 54. R. Goldstein, P. Kukanskis and J. John“Method and Composition for Continuous Electroless Copper Deposition Using a Hypophosphite Reducing Agent in the Presence of Cobalt or Nickel Ions”, U.S. Patent 4, 1981, 265, p.943. 55. F. R. Donald, “Electroless Copper Deposition Solutions with Hypophosphite Reducing Agent”, U.S. Patent 4, 1982, 325, p.990. 56. A. Hung, “Electroless Copper Deposition with Hypophosphite as Reducing Agent”,Plating and Surface Finishing, 1988, 75(1), p.62-65. 57. Y. Shacham-Diamand, and S.Lopatin, “Integrated Electroless Metallization for ULSI”, Electrochimica Acta, 1999, 44(21-22), p.3639. 58. J.E.A.M. Van. Den. Meerakker, “Electroless Copper Deposition Process Using Glyoxylic Acid as a Reducing Agent”, Journal of Electrochemical Society, 1994, 141, p.3. 59. J.E.A.M. Van. Den. Meerakker, “On the Mechanism of Electroless PlatingII, One Mechanism for Different Reductants”Journal of applied Electrochemistry, 1981, 11,p.395. 60. H. Honma, T. Kobayashi, “Electroless Copper Deposition Process Using Glyoxylic Acid as a Reducing Agent”, Journal of Electrochemical Society, 1994, 141, p.3. 61. Y.M. Lin, S. Chen, “Effects of Additives and Chelating Agents on Electroless Copper Plating”, Applied Surface Science, 2001, 178,p.116. 62. J. Li, H. Haydden, P. A. Kohl, “The Influence of 2,2’-dipyridyl on Non-formaldehyde Electroless Copper plating”, Electrochimica Acta, 2004, 49, p.1785-1795. 63. A. Kinoshita, K. Araki, H. Nawafune, S. Mizumoto, “Electroless Copper Plating Bath and Method”, 1987, US Patent 4, 650, p.691. 64. L. N. Schoenberg, “Use of Organic Additives to Stabilize and Enhance the Deposition Rate of Electroless Copper Plating”, Journal of the Electrochemical Society, 1972, 119,p.11. 65. 楊正杰、張鼎張、鄭晃忠,“銅金屬與低介電常數材料與製程”工業材料,2000, 167, p.121-126. 66. 蘇癸陽編譯,“實用電鍍理論與實際”,復文書局,1986,p.1-11& 158-168 67. 曾貨梁、陳均武等人編著,“電鍍工藝手冊”,機械工業出版社,1997. 68. L. Peter, A. Cziraki and L. Pogany, “Microstructure and Giant Magnetoresistance ofElectrodeposited Co-Cu/Cu Multilayer”, J. Electrochemistry Soc., 2001, 148, p.168-176 69. E. Toth Kadar, T. Becsei, and L. Peter, “Preparation and Magnetoresistance Characteristics of Electrodeposited Ni-Cu Alloys andNi-Cu/Cu Multilayer”, J. Electrochemistry Soc., 2000, 147, p.3311-3318 70. Aniruddha Joi, Rohan Akolkar, and Uziel Landau “Additives for Bottom-up Copper Plating from an Alkaline Complexed Electrolyte.” Journal of Eletrochemical Society, 2013, 160(12) , p.D3001-D3003 71. IBM Company, “IBM Makes Breakthrough To Copper.” Electronic Buyers News, 1997. 72. P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. horkans, H. Deligianni,and Damascene, “Copper Electroplating for Chip Interconnections.” IBM Journal of Research and Development, 1998. 42(5), p. 567-574. 73. 羅正忠、張鼎張, “半導體製程技術導論.”台灣培生教育出版股份有限公司, 民國 98 年. 74. P. Garrou, C. Bower, and P. Ramm, “Handbook of 3D Integration:Technology and Applications of 3D Integrated Circuits.” John Wiley & Sons Inc., 2008. 75. A. Noriki, M. Fujiwara, K. W. Lee, W. C. Jeong, T. Fukushima, T. Tanaka, and M. Koyanagi, “Optical Interposer Technology using Buried Vertical-Cavity Surface- Emitting Laser Chip and Tapered Through-Silicon Via for High-Speed Chip-to-Chip Optical Interconnection.” Japanese Journal of Applied Physics, 2009. 48(4), p. 1-5. 76. Webinar, “Glass and silicon packages.” 2010. 77. 詹博帆、竇維平“玻璃基材表面銅金屬化技術之研發”大專學生國科會研究計畫,民國102年. 78. Hajime Yoshiki, Kazuhito Hashimoto, and Akira Fujishima “Adhesion Mechanism of Electroless Copper Film Formed on Ceramic Substrates Using ZnO Thin Film as an Intermediate Layer”J. Electrochem. Soc., 1998. 145, p.1430-1434 79. Xiaoyun Cui, David A. Hutt, Paul P. Conway”Evolution of microstructure and electrical conductivity of electroless copper deposits on a glass substrate'Thin Solid Films 2012,520, p. 6095–6099 80. Areum Kim , Yulim Won , Kyoohee Woo , Sunho Jeong , and Jooho Moon “All Solution Processed Indium Free Transparent Composite Electrodes based on Ag Nanowire and Metal Oxide for Thin-Film Solar Cells”Adv. Funct. Mater. 2014, 24, p. 2462–2471
摘要: 晶片封裝技術中,2.5維/3維空間之晶片堆疊技術是未來封裝技術的導向,2.5D/3D 晶片封裝技術,透過將多顆晶片採取上下導通的架構進行垂直整合,此技術中,中介層扮演著重要的角色,以通孔作為晶片間互相連接的橋梁,讓2.5D/3D IC晶片封裝技術不僅縮短了信號的傳輸距離,對於寸土寸金的電路板而言,更具有小體積、高異質整合度、高效率、低耗電量及成本之優勢。以玻璃為基材行表面金屬化,不但具有降低成本的優勢,且玻璃為透光的材料,但玻璃具有光滑和不導電的表面,這些特性,使得玻璃難以進行金屬化。為了克服這個問題,利用溶膠 - 凝膠法製造氧化鋅作為中間附著層,再以無電電鍍進行銅金屬化,不需使用蝕刻的方式破壞玻璃表面,不採用高成本的乾式製程(濺射法),也可達到高附著性且導電良好之銅金屬層。以奈米銅粒子取代氯化鈀,不但在室溫下有良好的化學鍍銅催化效果與鍍析速度,更大幅降低製程成本。此外,本研究使用微量摻雜的概念,將微量氯化鋁摻雜在氧化鋅溶膠 - 凝膠溶液中,鋁摻雜氧化鋅不但可發揮中間附著層的作用,更是一個導電層。利用其導電特性,對其行直接電鍍,搭配鹼性電鍍銅配方,省略了無電電鍍的繁瑣步驟,獲得高附著性高導電性的銅金屬層披覆之玻璃基材。
For the chip packaging technology, the 2.5-dimensional / three-dimensional of the chip stacking technology is future-oriented packaging technology. The 2.5D/3D IC chip stacking technology is to connect chips in vertical integration, in this technology, interposers play important roles, which are important as bridges to the through-hole interconnection between chips. The 2.5D/3D IC chip technology not only shortens the transmission distance of the signal, but also have small volume, high Heterogeneous integration, high efficiency, low power consumption and cost advantages. However, glass wafer has a smooth and non-conductive surface, which is difficult to be metallized. To overcome this problem, sol-gel method was employed to make a zinc oxide layer as an intermediate for copper metallization of a glass wafer. The advantage of the process is that an etching step is not employed and the process cost is lower than those of sputtering or other dry processes. In this work copper nanoparticles (CuNPs) instead of palladium were employed as the catalyst for copper electroless plating because the cost of palladium is far higher than that of copper. In this process, zinc oxide plays an important role as an adhesion layer between the copper film and the glass. It was called an adhesive interlayer. In addition, a small amount of aluminum chloride was added in the sol-gel of zinc oxide precursor to produce an aluminum-doped zinc oxide. Aluminum-doped zinc oxide not only plays a role of adhesive interlayer, but also a conducting layer. As a result, copper can be directly electroplated on the aluminum-doped zinc oxide/glass.
URI: http://hdl.handle.net/11455/91515
其他識別: U0005-2204201511190500
文章公開時間: 10000-01-01
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.