Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91527
標題: 一系列新型離子液體共聚合物之合成及其在染料敏化太陽能電池之研究
Synthesis of a Series of Novel Ionic liquid Copolymers for Dye Sensitized Solar Cells
作者: Sheng-Kai Tseng
曾聖凱
關鍵字: imidazolium group
acrylonitrile
poly(ethylene oxide)
poly(ethylene glycol)
ionic liquid polymer electrolytes
dye-sensitized solar cell.
咪唑離子機團
丙烯腈
聚乙二醇
聚氧乙烯
離子液體高分子
染料敏化太陽能電池
引用: [1]. 張正華,李陵嵐,葉楚平,楊平華,有機與塑料太陽能電池,五南圖書股份有限公司,台北市,2007。 [2]. M. Grätzel, Nature, 2001, 414, 338-344. [3]. Y. Hamakawa, 2004, Thin-film solar cells: next generation photovoltaics and its applications. springer-verlag, Germany. [4]. C. Y. Chen, M. Wang, J. Y. Lee, N Pootrakulchote, L. Alibabaei, C. H. Ngoc-le, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin, M. Grätzel, 2009, ACS NANO, 3, 3103-3109. [5]. S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. Nazeeruddin, M.; Gratzel, Nature Chemistry, 2014, 6, 242-247. [6]. T. Miyasaka, M. Ikegami, Y. Kijitori, Journal of The Electrochemical Society, 2007, 154, A455-A461. [7]. M. Gräzel, Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 3-14. [8]. M. Grätzel, Accounts of Chemical Research, 2009, 42, 1788. [9]. J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, G. Luo, Chemical Reviews, 2015, 115, 2136-2173. [10]. K. Xu, Chemical Reviews, 2004, 104, 4303-4417. [11]. A. Nogueira, C. Longo, M. De Paoli, Coordination Chemistry Reviews, 2004, 248, 1455-1468. [12]. J. Wu, Z. Lan, S. Hao, P. Li, J. Lin, M. Huang, L. Fang, Y. Huang, Pure and Applied Chemistry, 2008, 80, 2241-2258. [13]. S. Ardo, G. J. Meyer, Chemical Society Reviews, 2009, 38, 115-164. [14]. S. Thomas, T.G. Deepak, G.S. Anjusree, T.A. Arun, S.V. Nair, A.S. Nair, Journal of Materials Chemistry A, 2014, 2, 4474-4490. [15]. A. Hagfeldt, G. Boschloo, L. Sun, L Kloo, H Pettersson, Chemical Reviews, 2010, 110, 6595-6663. [16]. A. Jena, S. P. Mohanty, P. Kumar, J. Naduvath, V. Gondane, P. Lekha, J. Das, H. K. Narula, S. Mallick, P. Bhargava, Transactions of the Indian Ceramic Society, 2012, 71, 1-16. [17]. Y. L. Lee, C. L. Chen, L. W. Chong, C. H. Chen, Y. F. Liu, C. F. Chi, Electrochemistry Communications, 2010, 10, 1662-1665. [18]. R. Klose, A. Bird, Science, 2003, 302, 792-793. [19]. I. Krossing, A. Reisinger, Coordination Chemistry Reviews, 2006, 250, 2721-2744. [20]. M. Gorlov, L. Kloo, Dalton Transactions, 2008, 20, 2655-2666. [21]. H. Wang, X. Zhang, F. Gong, G. Zhou, Z. S. Wang, Advanced Materials, 2012, 24, 121-124. [22]. J. Y. Kim, T. H. Kim, D. Y. Kim, N. G. Park, K. D. Ahn, Journal of Power Sources, 2008, 175, 692-697. [23]. R. K. Zhang, Z. Sun, H. H. Xie, X. Wu, M. Liang, S. Xue, Solar Energy, 2012, 86, 2346-2353. [24]. J. A. Seo, J. K. Koh, K. B. Lee, S. W. Kang, J. H. Kim, Journal of Solid State Electrochemistry, 2012, 16, 513-520. [25]. M. Li, S. Feng, S0 Fang, X. Xiao, X. Li, X. Zhou, Y. Lin, Electrochimica Acta, 2007, 52, 4858-4863. [26]. X. Chen, J. Zhao, J. Zhang, L. Qiu, D. Xu, H. Zhang, X. Han, B. Sun, G. Fu, Y. Zhang, F. Yan, Journal of Materials Chemistry, 2012, 22, 18018-18024. [27]. J. Gun, S. A. Kulkarni, W. Xiu, S. K. Batabyal, S. Sladkevich, P.V. Prikhodchenko, V. Gutkin, O. Lev, Electrochemistry Communications, 2012, 19, 108-110. [28]. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Gräzel, Journal of thr American Society, 1993, 115, 6382-6390. [29]. J. Zhao, X. Shen, F. Yan, L. Qiu, S. Lee, B. Sun, Journal of Materials Chemistry, 2011,21,7326-7330.
摘要: 本研究將甲基丙烯酸-2-羥基乙酯 (2-Hydroxyethyl methacrylate) 與亞硫酰氯 (Thionyl chloride) 反應,使末端上之羥基取代成氯化烴,再將氯化烴與碘化納 (Sodium iodide) 反應,使末端上之氯化烴取代成碘化烴,最後再將碘化烴與1-正丁基咪唑 (1-(n-Butyl) imidazole) 反應,製備出含咪唑官能基之離子液體單體([(2-methacryloyloxy)ethyl]-3-butylimidazolium iodide,MEBIm-I),將此離子液體 (IL) 單體與丙烯腈 (Acrylonitrile) 單體、聚乙二醇甲基丙烯酸酯 (POEM) 單體依不同重量百分比,以偶氮二異丁腈 (Azobisisobutyronitrile,AIBN) 作為起始劑進行自由基聚合,合成出離子液體 (IL) ‐丙烯腈 (A) 二元共聚物ILA11 (IL:A = 1:1,w/w)、以及離子液體 (IL) ‐聚乙二醇甲基丙烯酸酯 (P) –丙烯腈 (A) 三元共聚物 ILPA431 (IL:P:A = 4:3:1,w/w/w) 、ILPA211 (IL:P:A = 2:1:1,w/w/w)、ILPA413 (IL:P:A = 4:1:3,w/w/w),其中,其重量百分比為進料時之重量百分比。經由1H-NMR光譜分析、結合元素分析之結果,推算出各個單體在共聚高分子內之莫耳數比,以鑑定確認化學結構。由TGA與DSC進行熱性質之分析,發現三元離子體共聚高分子比起二元離子液體共聚高分子具有更高的熱裂解溫度,而在DSC方面,ILPA211與ILPA431也有相對較低的玻璃轉移溫度。 本研究將合成出的離子液體共聚高分子以10wt%添加於以乙腈 (Acetonitrile,ACN) 為溶劑之液態電解質內,形成離子液體高分子電解質,進行離子導電度與極限擴散電流分析之量測,發現當共聚高分子內之POEM單體含量增加會使離子導電度與I3-之擴散係數提升。將上述之電解質注入於以N719染料製成之染料敏化太陽能電池 (DSSC) ,並進行光電轉換效率與電化學交流阻抗量測。研究結果顯示,相較於液態電解質之DSSC元件,添加了離子液體高分子於電解質之DSSC元件皆有較高的電流密度 (Jsc),但卻會使填充因子 (FF) 下降。其中除了ILPA211之電解質外,其其它高分子電解質所配製之DSSC元件,其光電轉換效率皆大於液態電解質之光電轉換效率6.7%,當中又以ILPA431具有最高之光電轉換效率 7.50%。
A series of ionic liquid copolymers have been synthesized by the copolymerization of the imidazolium-containing ionic liquid (IL) monomer (MEBIm-I), poly(ethylene glycol) methyl ether methacrylate (POEM), and acrylonitrile with different feed weight ratios. The copolymers were prepared through the free radical polymerization by using the AIBN initiator. Copolymers ILP11 and ILA11 were obtained by the copolymerization of ionic liquid monomer with POEM and acrylonitrile, respectively. Moreover, copolymers ILPA413, ILPA211, ILPA431 were obtained by the copolymerization of ionic liquid monomer with POEM and acrylonitrile in different feed weight ratios (ionic liquid monomer: POEM: acrylonitrile = 4:1:3, 2:1:1, and 4:3:1). Chemical structures of these ionic liquid copolymers have been characterized and confirmed by using 1H-NMR spectroscopy and elemental analyzer. The molar ratios of ionic liquid monomer, POEM, and acrylonitrile in copolymers ILPA413, ILPA211, and ILPA431 are about 1:0.15:1.95, 1:0.28:1.17, and 1:0.38:0.48, respectively. In addition, TGA results indicated that the thermal stability of these ionic liquid copolymers were enhanced by increasing the acrylonitrile content. Higher glass transition temperature was observed for the copolymer with higher acrylonitrile content. Apart from that, ionic liquid polymer based gel electrolytes were prepared by addition of 10 wt % ionic liquid copolymer in acetonitrile solvent based liquid electrolyte. Higher ionic conductivity and larger diffusion coefficient of I3- were observed for the gel electrolyte based on the ionic liquid copolymer with higher POEM content. On the other hand, photovoltaic (PV) and electrochemical impedance properties of these ionic liquid copolymers based DSSCs were discussed. Better PV performance was obtained from the ionic liquid polymer gel electrolyte based DSSC as compared to that of the ionic liquid electrolyte based DSSC. The ionic liquid copolymer ILPA431 based DSSCs exhibited the highest photoelectric conversion efficiency (PCE = 7.503%).
URI: http://hdl.handle.net/11455/91527
其他識別: U0005-2508201512114800
文章公開時間: 2018-08-26
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.