Please use this identifier to cite or link to this item:
標題: 不同層狀雙氫氧化物(LDHs)之添加對於枯草桿菌 Bacillus subtilis CWS1在液態發酵生產表面素之探討
Effect of different layered double hydroxides addition on surfactin production by Bacillus subtilis CWS1 in the submerged culture
作者: Pei-Hsin Chang
關鍵字: Bacillus subtilis
Layered Double Hydroxides
引用: 1. Takahashi, T., et al., Inhibition of lipopolysaccharide activity by a bacterial cyclic lipopeptide surfactin. Journal of Antibiotics, 2006. 59(1): p. 35-43. 2. 唐金山, et al., 環脂肽類成分研究進展. Acta Pharmaceutica Sinica, 2008. 43(9): p. 873-883. 3. Ongena, M. and P. Jacques, Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology, 2008. 16(3): p. 115-125. 4. Yang, Q.Z., J. Yang, and C.K. Zhang, Synthesis and properties of cordycepin intercalates of Mg–Al–nitrate layered double hydroxides. International Journal of Pharmaceutics, 2006. 326(1–2): p. 148-152. 5. 謝奉加, 植物病害的殺手明星枯草桿菌. Vol. 391期. 2005: 科學發展. p.18-21. 6. Ghafoor and Hasnain, Purification and Characterization of an Extracellular Protease from Bacillus subtilis EAG-2 Strain Isolated from Ornamental Plant Nursery. . Polish Journal of Microbiology, 2010. 59(2): p. 107-112. 7. Leonel Ochoa-Solano, J. and J. Olmos-Soto, The functional property of Bacillus for shrimp feeds. Food Microbiology, 2006. 23(6): p. 519-525. 8. 姜莉莉, 陳彥閔, and 辛明秀, 枯草芽孢桿菌在防治植物病害上的應用與研究發展. 2009. 9. 高學文, et al., 枯草芽孢杆菌B2菌株產生的抑菌活性物質分析. 中國生物防治, 2003. 第19第4期. 10. Zhang, et al., A novel small antifungal peptide from Bacillus strain B-TL2 isolated from tobacco stems. 29(3): p. 350-5. Peptides, 2008. 29(3): p. 350-5. 11. Kloepper, J.W., C.M. Ryu, and S. Zhang, Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology, 2004. 94: p. 1259-1266. 12. Wilhelm, E., et al., Bacillus subtilis an endophyte of chestnut (Castanea sativa) as antagonist against chestnut blight (Cryphonectria parasitica). . Plant Cell Tissue Organ Cult., 1998. 52: p. 105-108. 13. 劉柏青, 利用枯草桿菌水解台灣鯛魚鱗膠原蛋白. 2008, 台南,台灣: 國立成功大學化學研究所系碩士論文. 14. Zou, A.-h., J. Liu, and B.-z. Mu, Interaction between the natural lipopeptide [Glu1, Asp5] surfactin-C15 and hemoglobin: A spectroscopic and electrochemical investigation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010. 369(1–3): p. 154-159. 15. Han, Y., et al., Micellization of Surfactin and Its Effect on the Aggregate Conformation of Amyloid β(1-40). The Journal of Physical Chemistry B, 2008. 112(47): p. 15195-15201. 16. 周建良, 醣脂類生物界面活性劑 rhamnolipid醱酵基質最適化及生產策略之研究. 2005, 台南,台灣: 國立成功大學化學工程學系碩士論文. 17. Hsieh, et al., Rapid detection and characterization of surfactin-producing Bacillus subtilis and closely related species based on PCR. Curr. Microbiol, 2004. 49: p. 186-191. 18. Ahimou, F., P. Jacques, and M. Deleu, Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzyme and Microbial Technology, 2000. 27(10): p. 749-754. 19. Desai, J.D. and I.M. Banat, Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews, 1997. 61(1): p. 47-64. 20. Thimon, L., et al., Effect of the lipopeptide antibiotic, iturin A, on morphology and membrane ultrastructure of yeast cells. FEMS Microbiology Letters, 1995. 128(2): p. 101-6. 21. Deleu, M., M. Paquot, and T. Nylander, Effect of Fengycin, a Lipopeptide Produced by Bacillus subtilis, on Model Biomembranes. Biophysical Journal 2008. 94(7): p. 2667-2679. 22. 侯紅漫, et al., 環脂肽類生物表面活性劑結構、功能及生物合成. 微生物學通報, 2006. 33(5): p. 122-128. 23. Souto, G.I., et al., Genetic and functional characterization of a Bacillus sp. strain excreting surfactin and antifungal metabolites partially identified as iturin-like compounds. Journal of Applied Microbiology, 2004. 97(6): p. 1247-56. 24. Kim, P.I., et al., Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. Journal of Applied Microbiology, 2004. 97(5): p. 942-949. 25. Ongena, M., et al., Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Applied Microbiology and Biotechnology, 2005. 69(1): p. 29-38. 26. Hue, N., L. Serani, and O. Laprevote, Structural investigation of cyclic peptidolipids from Bacillus subtilis by high-energy tandem mass spectrometry. Rapid Commun Mass Spectrom, 2001. 15(3): p. 203-9. 27. Bonmatin, J.M., Solution three‐dimensional structure of surfactin: A cyclic lipopeptide studied by 1H‐nmr, distance geometry, and molecular dynamics. Biopolymers, 1994. 34(7): p. 975. 28. Osman, M., et al., Dynamic transition of α-helix to β-sheet structure in linear surfactin correlation to critical micelle concentration. Biotechnology Letters, 1994. 16: p. 913-918. 29. 胡志霖, 表面素在土壤復育之應用的探討. 2008: 國立成功大學化學工程學系碩士論文. 30. Heerklotz, H. and J. Seelig, Detergent-like action of the antibiotic peptide surfactin on lipid membranes. Biophysical Journal 2001. 81(3): p. 1547-54. 31. Ishigami, Y., et al., Significance of β-sheet formation for micellization and surface adsorption of surfactin. Colloids and Surfaces B: Biointerfaces, 1995. 4(6): p. 341-348. 32. Razafindralambo, H., et al., Foaming properties of lipopep-tides produced by Bacillus subtilis: effect of lipid and peptide structural attributes. 1998. 46: p. 911-916. 33. Park, S.Y. and Y. Kim, Surfactin inhibits immunostimulatory function of macrophages through blocking NK-kappaB, MAPK and Akt pathway. Int Immunopharmacol 2009. 9(7-8): p. 886-893. 34. Itokawa H, et al., Structural and conformational studies of [Ile7] and [Leu7]surfactins from Bacillus subtilis natto. . Chem Pharm Bull (Tokyo). 1994. 42(3): p. 604-607. 35. Vollenbroich D, et al., Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from Bacillus subtilis. . Biologicals., 1997. 25(3): p. 289-297. 36. Kracht M, et al., Antiviral and hemolytic activities of surfactin isoforms and their methyl ester derivatives. . J Antibiot (Tokyo). , 1999. 52(7): p. 613-619. 37. Adams, K.R. and F.G. Priest, Extracellular pullulanase synthesis in Bacillus macerans. FEMS Microbiology Letters, 1977. 1(5): p. 269-273. 38. Beven L and W. H., Effect of natural amphipathic peptides on viability, membrane potential, cell shape and motility of mollicutes. . Res Microbiol., 1997. 148(2): p. 163-175. 39. Dufour S, et al., Hemolytic activity of new linear surfactin analogs in relation to their physico-chemical properties. . Biochim Biophys Acta. , 2005. 1726(1): p. 87-95. 40. Vollenbroich D, O.M. Pauli G, and V. J., Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. . Appl Environ Microbiol., 1997. 63(1): p. 44-49. 41. Kim SD, et al., Surfactin C inhibits platelet aggregation. J Pharm Pharmacol., 2006. 58(6): p. 867-870. 42. Kim, K., et al., Suppression of Inflammatory Responses by Surfactin, a Selective Inhibitor of Platelet Cytosolic Phospholipase A2. Biochemical Pharmacology, 1998. 55(7): p. 975-985. 43. DAE, K.S., et al., A comparison of the anti-inflammatory activity of surfactin A, B, C, and D from Bacillus subtilis. Vol. 16. 2006, Seoul, COREE, REPUBLIQUE DE: Korean Society for Applied Microbiology. 4. 44. Kim, S.Y., et al., Surfactin from Bacillus subtilis displays anti-proliferative effect via apoptosis induction, cell cycle arrest and survival signaling suppression. FEBS Letters, 2007. 581(5): p. 865-71. 45. Vollenbroich, D., et al., Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Applied and Environmental Microbiology, 1997. 63(1): p. 44-9. 46. 葉瑩, 微小世界的貢獻-生物農藥. Vol. 443. 2009: 科學發展. 47. 江迪蔚, 枯草桿菌Bacillus subtilis WG6-14於檬果黑斑病防治之應用潛力與作用機制. 2006, 台中,台灣: 國立中興大學植物病理學系碩士論文. 48. 林弘裕, 液化澱粉芽孢桿菌胜肽抗生物質之分析與回收純化探討. 2001, 花蓮,台灣: 國立東華大學生物技術研究所碩士論文. 49. F., C., T. F., and V. A., Hydrotalcite-type anionic clays: preparation, properties and applications. Catal, 1991: p. 173-301. 50. Goh, K.-H., T.-T. Lim, and Z. Dong, Application of layered double hydroxides for removal of oxyanions: A review. Water Research, 2008. 42(6–7): p. 1343-1368. 51. Esch.A., V., et al., Antipyretic efficacy of ibuprofen and acetaminophen in children with febrile seizures. Archives of pediatrics & adolescent medicine, 1995. 149(6): p. 632-637. 52. He, et al., Preparation of layered double hydroxides. Struct. Bond, 2005. 119(1): p. 89-119. 53. Cavani, et al., Hydrotalcite-type anionic clays: preparation, properties and applications. . Catal., 1991. 11: p. 173-301. 54. 樂金東 and 於少明, 即時合成含鉛類水滑石處理含鉛廢水的研究. 安徽化工, 2010. 36(1): p. 35-37. 55. 呂律, 彭書傳, and 陳天虎等,, 即時合成 LDH 去除焦磷酸鹽鍍銅廢水中的磷. 武漢理工大學學報, 2008. 30(4): p. 65-68. 56. Morel-Desrosiers, et al., Intercalation of dicarboxylate anions into a Zn-Al-Cl layered double hydroxide: microcalorimetric determination of the enthalpies of anion exchange. J. Mater. Chem., 2003. 13(10): p. 2582-2585. 57. Erickson, et al., A study of structural memory effects in synthetic hydrotalcites using environmental SEM. Mater. Lett., 2005. . 59(2-3): p. 226-229. 58. Marchi, et al., Impregnation-induced memory effect of thermally activated layered double hydroxides. Appl. Clay Sci. , 1998.. 13 (1): p. 35-48. 59. Rocha, et al., Reconstruction of layered double hydroxides from calcined precursors: a powder XRD and 27A1 MAS NMR study. J. Mater. Chem., 1999. 9(10): p. 2499-2503. 60. Park, D.-H., et al., Polymer–inorganic supramolecular nanohybrids for red, white, green, and blue applications. Progress in Polymer Science, 2013. 38(10–11): p. 1442-1486. 61. Choy, J.H., J.M. Oh, and S.J. Choi, 4.432 - Layered Double Hydroxides as Controlled Release Materials, in Comprehensive Biomaterials, P. Ducheyne, Editor. 2011, Elsevier: Oxford. p. 545-557. 62. Choy, J.-H., et al., Layered double hydroxide as an efficient drug reservoir for folate derivatives. Biomaterials, 2004. 25(15): p. 3059-3064. 63. Kuwahara, T., H. Tagaya, and K. Chiba, Photochromism of spiropyran dye in LiAl layered double hydroxide. Microporous Materials, 1995. 4(2–3): p. 247-250. 64. Albiston, L., et al., Rheology and microstructure of aqueous layered double hydroxide dispersions. Journal of Materials Chemistry, 1996. 6(5): p. 871-877. 65. 徐麗瀅, 自製沸石玻纖濾網之特性分析及其甲醛吸附效能之研究. 國立雲林科技大學環技與安全衛生工程系, 2007. 66. Ruthven, D.M., Principles of adsorption and adsorption Process. 1984, New York: Wiley-Interscience. 67. Cooper, D.G., et al., Enhanced Production of Surfactin from Bacillus subtilis by Continuous Product Removal and Metal Cation Additions. Applied and Environmental Microbiology, 1981. 42(3): p. 408‐12. 68. Wei, Y.H. and I.M. Chu, Mn2+ improves surfactin production by Bacillus subtilis. Biotechnology Letters, 2002. 24(6): p. 479‐482. 69. Yeh, M.S., Y.H. Wei, and J.S. Chang, Enhanced Production of Surfactin from Bacillussubtilis by Addition of Solid Carriers. Biotechnology Progress, 2005. 21(4): p. 1329-1334. 70. Emmanuel Delhaize, P.R.R., Aluminum Toxicity and Tolerance in Plants Plant Physiol, 1995: p. 315-321.
摘要: 近年來,生物界面活性劑surfactin(從自然中生產之胜肽),被廣泛地運用在生物醫學上。雖然生物界面活性劑在生物醫學與植物病學上極具潛力,但量產及純化條件的資訊仍是有限的。先前本實驗室的結果指出以枯草桿菌Bacillus subtilis CWS1液態醱酵生產表面素surfactin,添加層狀雙氫氧化物Mg-Al-nitrate LDHs可以有效增加表面素之產量。 本研究將分為兩部分作探討,第一部分針對其吸附機制作探討,由XRD分析 LDHs層間距由吸附前的7.8 Å撐開至16.1 Å,藉此證實層狀雙氫氧化物會將表面素吸附其中,同時以HPLC分析LDHs之內含物,發現具有表面素之存在,並藉由SEM與EDX成分分析可觀察層狀雙氫氧化物吸附情形。 第二部分將針對不同比例之Mg-Al-nitrate LDHs以及Mg-Fe-nitrate LDHs添加對於枯草桿菌Bacillus subtilis CWS1發酵產表面素產量之探討,結果表示,添加6 g/L濃度的Mg-Al-nitrate LDHs主培養五天可得到表面素最大產量約3789 mg/L;添加6 g/L濃度的Mg-Fe-nitrate LHDs主培養第一天就產出4280 mg/L的表面素,四天即可產5130 mg/L的表面素,顯示用Mg-Fe-nitrate LDHs對於CWS1產表面素之效益更加突出,並針對菌量與表面素產量作與時間的關係圖,顯示菌體對於此添加物有很好的適應性,但是其產表面素能力依舊維持一動態平衡;經一系列實驗探討,顯示添加Mg-Fe-nitrate LDHs有助於表面素生產之改善,並具有工業應用之潛能。
Surfactin, one of the biological surfactants was found to possess great potential in biomedical and plant disease application. However, information about the production and purification condition is still limited. In the previous study, the addition of Mg-Al-nitrate LDHs in the liquid culture of Bacillus subtilis CWS1 could significantly increase the surfactin production This study includes two part. In the first part, XRD (X-ray diffractometer) was used to measure the basal spacing of LDHs. The surfactin intercalation involves an ionic exchange reaction of LDHs at 25℃ and under N2 atmosphere in the aqueous solution could yield a series of biomolecules-LDHs with basal spacing ranging from 7.8 Å of 16.1 Å, revealed by XRD analyses. The wide interlayer spacing might be attributed to the self-alignment of the biomolecules in the layer confinement, as analyzed the components by HPLC. In addition, SEM (scanning electron microscope) and EDX (Energy-dispersive X-ray spectrometry) was used to verify the adsorption of surfactin. The process of embedding biomolecules into the clay gallery provides a new method for synthesizing biomaterial/LDHs hybrids potentially useful in agriculture or biomedical design. In the second part, different LDHs, Mg-Al-nitrate LDHs and Mg-Fe-nitrate LDHs, were used as additive to the cultivation of Bacillus subtilis CWS1. In our study, 6 g/L of Mg-Al-nitrate LDHs addition gave the maximum surfactin production of 3789 mg/L after five days culture. However, 4280 mg/L of surfactin was produced in one day culture when 6 g/L of Mg-Fe-nitrate LHDs was added to the cultivation. The maximum production of 5130 mg/L was obtained in four days cultivation. These results indicated that addition of Mg-Fe-nitrate LHDs in Bacillus subtilis CWS1 culture could effectively enhance the production of surfactin. As seen from the time course of the cultuvation, we could found out Mg-Fe-nitrate LHDs addition was found harmless to Bacillus subtilis, the production of surfactin was kept in a dynamic equilibrium. This study provided an approach for improving surfactin production from Bacillus subtilis CWS1 via the addition of Mg-Fe-nitrate LDHs as a stimulator.
其他識別: U0005-2207201516364800
文章公開時間: 2018-07-28
Appears in Collections:化學工程學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.