Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91540
DC FieldValueLanguage
dc.contributor戴憲弘zh_TW
dc.contributorShenghong A. Daien_US
dc.contributor.authorWei-Hsing Linen_US
dc.contributor.author林維興zh_TW
dc.contributor.other化學工程學系所zh_TW
dc.date2015zh_TW
dc.date.accessioned2015-12-11T06:51:10Z-
dc.identifierU0005-2906201521484100zh_TW
dc.identifier.citationREFERENCE [1]Kojio K, Fukumaru T, Furukawa M. Highly Softened Polyurethane Elastomer Synthesized with Novel 1,2-Bis(isocyanate)ethoxyethane. Macromolecules 2004;37(9):3287-91. [2]Edward T. Shawl, John G. Zajacek, Haven S. Kesling, Jr. Process for the preparation of aliphatic isocyanates. Eur Patent 1991;0408277 2A. [3]Klaus Biskup, Peter Fuhrmann, Peter Keldenich, Christian Six. Process for the manufacture of (poly-)isocyanates in the gas phase. US Patent 2004;0167354 A1. [4]Daya R. Varma. The Bhopal Disaster of 1984. Bulletin of Science, Technology and Society 2005. [5]AJioka Masanobu, Makoto, Kataita Masfumi. Process for preparing hexamethylene diisocyanate. DE Patent 1987;3540863 C1. [6]M Hirose, F. Kadowaki, Jianhui Zhou. The structure and properties of core-shell type acrylic-polyurethane hybrid aqueous emulsions. Progress in Organic Coatings 1997;31:157-69. [7]Heiner Eckert, Barbara Forster. Triphosgene, a Crystalline Phosgene Substitute. Angew. Chem. Int. Ed. Engl. 1987;26(9):894-5. [8]Porta F, Cenini S. Reactions of dimethyl carbonate with amines catalyzed by metal centers. Gazz. Chim. Ital. 1985;115(5):275-7. [9]Fukuoka Shinsuke, Watanabe Tomoya. Preparation of aliphatic isocyanate. JP Patent 1985;60226852. [10]Thorpe David, Smith Richard Colin. Process for making aliphatic and cycloaliphatic polyisocyanates. Eur Patent 1989;0327231 A1. [11]William Dennis Mcghee, Mark Dana Paster, Dennis Patrick Riley, Kenneth Walter Ruettimann, Arthur John Solodar, Thomas Edward Waldman. Carbon dioxide and primary amine. US Patent 1995;5451697 A. [12]Damle. Safe handling of diphosgene, triphosgene. Chemical and Engineering News 1993;71(6): 4. [13]Chimica Oggi Chemistry Today 2011;29(4) :59-61. [14]Sergio Cenini, Corrado Crotti, Maddalena Pizzotti, Francesca Porta. Ruthenium carbonyl catalyzed reductive carbonylation of aromatic nitro compounds. A selective route to carbamates. J Org. Chem. 1988;53(6):1243-50. [15]Fukuoka Shinsuke, Masazumi Chono, Masashi Kohno. A novel catalytic synthesis of carbamates by the oxidative alkoxycarbonylation of amines in the presence of platinum group metal and alkali metal halide or onium halide. J Org. Chem. 1984;49(8):1458-60. [16]Franz Merger, Friedrich Towae, Hans Hellbach, Gunther Isbarn, Waldemar Koehler. Hexamethylenetriamine or alkylenediamines reacted with urea and alcohol to form urethanes, which are vaporized, thermally cleaved. US Patent 1986;4596678 A. [17]Sergio Castillon Miranda, Carmen Claver Cabrero, Elena Fernandez Gutierrez, Pilar Salagre Carnero, Marc Serra Queralt, Pedro Uriz Sola. Isocyanate production procedure. US Patent 2003;6639101 B2. [18]Hsueh-Yung Chen, Wen-Chen Pan, Chao-Hsing Lin, Chun-Ying Huang. Synthesis and trans-ureation of N,N’-diphenyl-4,4′-methylenediphenylene biscarbamate with diamines: a non-isocyanate route (NIR) to polyureas. J Polym Res 2012;19: 9754. [19]Luc Ubaghs, Bhaskar Sharma, Helmut Keul, Hartwig Höcker, Ton Loontjens, Rolf van Benthem. Synthesis and characterization of alternating poly(amide urea)s and poly(amide urethane urethane)s from ε-caprolactam, diamines, and diphenyl carbonate or ethylene carbonate. E-Polymers 2003;3(1):887-902. [20]M. Shinohata, N. Miyake. Process for producing isocyanate using diaryl carbonate. Eur Patent 2011;2275405 A1. [21]Unpublished works of Dai’s lab. 2014. [22]Franz Merger, Gerhard Nestler, Friedrich Towae. Process for the manufacture of mixtures of diphenylmethane diisocyanates and polyphenyl polymethylene polyisocyanates. US Patent 1982; 4349484. [23]K. Weissermel, H-J. Arpe. Industrial Organic Chemistry. 3rd ED. New York: VCH Publishers Inc., 1997, p.380. [24]Franz Merger, Friedrich Towae. Process for preparing aryl isocyanates by thermal decomposition of aryl urethanes. EP Patent 1981;0028724.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/91540-
dc.description.abstract在此異氰酸之新綠色製程研究中,我們透過非光氣法的途徑(NPR)使用脂肪族N,N’-二苯基烷基二氨基甲酸酯(Diphenyl N,N’-alkenylbiscarbamates)為反應中間體進行熱裂解,各別合成出四種不同結構型態的脂肪族二異氰酸酯。首先,在反應溫和且無催化劑的條件下,以四種脂肪族二胺與碳酸二苯酯為反應物進行羰基化反應,可以很容易的製備與分離純化出四種高產率(>90%)、高純度的中間體(二苯基二氨基甲酸酯)。此外,此四種中間體在使用二苯醚(DPE)作為溶劑、且240~255°C的條件下進行熱裂解各別的二苯基二氨基甲酸酯, 成功地分別獲得四種結構型態的脂肪族二異氰酸酯與可被回收的苯酚。在這一系列的研究中,以1,12-二異氰酸十二酯(DDI)透過分離分餾後的84%產率最高,其它三種如1,6-二異氰酸己酯(HDI)、1,4-二異氰酸丁酯(BDI)、1-異氰酸-4-異氰酸苄酯(4-IBPI)的產率也達到76%,其餘的比例為異氰酸酯的寡聚物。一鍋化的合成方法為:在二苯醚(DPE)作為溶劑,並結合上述兩個步驟,先進行二苯基烷基二氨基甲酸酯的中間體合成,之後馬上完成熱裂解。在此以1,12-二異氰酸十二酯(DDI)透過分離的80%產率與二異氰酸異佛爾酮(IPDI)的86%產率最佳而1,6-二異氰酸己酯(HDI)的產率為71%。利用此可普及化且極具效率的綠色化學製程製備脂肪族二異氰酸酯,不僅能有傑出的產率,更能避免於反應過程中使用具毒性的光氣或金屬催化劑。zh_TW
dc.description.abstractA non-phosgene route (NPR) of making aliphatic diisocyanates has been developed through synthesis and thermolysis of diphenyl N,N’-alkenylbiscarbamates (diphenyl biscarbamates). Four diphenyl biscarbamates were prepared readily by carbonylation of three aliphatic diamines and one aryl aliphatic mixed diamine with the carbonylation reagent diphenyl carbonate (DPC) in 1,2-diethoxyethane (EGDEE) under mild conditions. Pure diphenyl biscarbamates were isolated in >90% for each case. Thermolysis of individual diphenyl biscarbamate in diphenyl ether solution at 240~255 oC readily cracked them into four respective diisocyanates and recovering phenol. In this study, 1,12-dodecamethylene diisocyanate (DDI) gave the highest isolation yields (84 %) through fractionation. The yields of 1,6-hexamethylene diisocyanate (HDI), 1,4-butamethylene diisocyanate (BDI) and 1-isocyanato-4-(isocyanatomethyl)benzene (4-IBPI) were slightly lower (~76 %) with by-products consisting of isocyanate oligomers. More notable than high yields, we succeeded in developing a one-pot two-stage NPR process in diphenyl ether solution by first synthesis of biscarbamate followed immediately by thermolysis in the same solution. Excellent yields of DDI (80 %) and isophorone diisocyanate (86 %) along with HDI (71 %) were prepared in the one-pot synthesis. Thus, a general green-chemical process has been developed for aliphatic diisocyanate without using toxic phosgene or any undesirable metal catalysts.en_US
dc.description.tableofcontentsCONTENT Chapter 1 Introduction……………………………………………………………1 1.1 Applications of Aliphatic diisocyanates (ADIs)…………1 1.2 Preparations of phosgene route process……………………1 1.2.1 Disadvantages of phosgene route process……………… 1 1.3 Introduction of non-phosgene route (NPR)…………………2 Chapter 2 Experimental Section……………………………………10 2.1 Materials………………………………………………………… 10 2.2 Measurements………………………………………………………13 2.3 Synthesis of General Preparative Procedures for Aliphatic Alkenyl-bis (phenyl carbamate)4a~4e……………… 14 2.3.1 N,N’-diphenyl hexamethylene biscarbamate (HMBPC) 4a…………………………………………………………………………15 2.3.1.1 Effect of different polar solvent in the synthesis of HMBPC 4a-1 ~ 4a-3…………………………………………………15 2.3.1.2 Effect of different solid content concentration in the synthesis of HMBPC 4a-4 ~ 4a-10…………………………… 24 2.3.2 N,N’-diphenyl dodecamethylene biscarbamate (DMBPC) 4b…………………………………………………………………………31 2.3.3 N,N’-diphenyl butamethylene biscarbamate (BMBPC) 4c…………………………………………………………………………37 2.3.4 4-Aminobenzene-diphenyl-biscarbamate (4-TABPC) 4d…………………………………………………………………………43 2.4 Pyrolysis of Alkenylbis (phenyl carbamate) for Diisocyanate Preparation 4a’~4e’………………………………49 2.4.1 Pyrolysis of HMBPC to 1,6-hexamethylene diisocyanate (HDI) 4a’………………………………………………………………51 2.4.1.1 Effect of different polar solvent in the pyrolysis of HMBPC 4a’-1 ~ 4a’-3……………………………………………51 2.4.1.2 Effect of different solid content concentration in the pyrolysis of HMBPC 4a’-4 ~ 4a’-5…………………………56 2.4.2 Pyrolysis of DMBPC to 1,12-dodecamethylene diisocyanate (DDI) 4b’…………………………………………… 60 2.4.3 Pyrolysis of BMBPC to 1,4-butamethylene diisocyanate (BDI) 4c’………………………………………………………………64 2.4.4 Pyrolysis of Diphenyl tolylene-alpha,4-dicarbmate (4-TABPC) to 1-isocyanato-4-(isocyanatomethyl)benzene (4-IBPI) 4d’………………………………………………………… 67 2.5 One-pot two-stage NPR (Non-phosgene Route) process………………………………………………………………… 70 2.5.1 One-pot Synthesis of 1,12-dodecamethylene diisocyanate (DDI)……………………………………………………………………………71 2.5.2 One-pot Synthesis of 1,6-hexamethylene diisocyanate (HDI)……………………………………………………………………………79 2.5.3 One-pot Synthesis of isophorone diisocyanate (IPDI)……………………………………………………………………………84 Chapter 3 Results and Discussion………………………………………………………………90 3.1 Preparation of Alkylenebis(phenyl carbamate)……………90 3.2 Pyrolysis of Alkylenebis(phenyl carbamate) for Diisocyanate Preparation…………………………………………………………… 94 3.3 One-pot two-stage NPR (Non-phosgene Route) process……99 Chapter 4 Conclusion…………………………………………………………… 101 Appendix……………………………………………………………… 102 Acknowledgment……………………………………………………… 103zh_TW
dc.language.isoen_USzh_TW
dc.rights不同意授權瀏覽/列印電子全文服務zh_TW
dc.subjectnon-phosgene routeen_US
dc.subjectdiphenyl carbonateen_US
dc.subject1,12-dodecamethylene diisocyanate (DDI)en_US
dc.subjectisophorone diisocyanate (IPDI)en_US
dc.subjectaliphatic diisocyanatesen_US
dc.subjectone-pot NPR processen_US
dc.subject非光氣法途徑(NPR)zh_TW
dc.subject脂肪族二元異氰酸zh_TW
dc.subject熱裂解、碳酸二苯酯zh_TW
dc.subject二元異氰酸酯zh_TW
dc.subject一鍋化製程zh_TW
dc.subject綠色製程zh_TW
dc.title使用脂肪族二胺與碳酸二苯酯在高效率的一鍋化合成法中製備脂肪族二異氰酸酯zh_TW
dc.titleAn Efficient One-Pot Synthesis of Aliphatic Diisocyanate from Diamine and Diphenyl Carbonateen_US
dc.typeThesis and Dissertationen_US
dc.date.paperformatopenaccess2018-07-06zh_TW
dc.date.openaccess10000-01-01-
Appears in Collections:化學工程學系所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.