Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91545
標題: 利用Caldimonas manganoxidans嗜熱菌生產PHB、PHBV、P(3HB-co-HH)及降解聚酯薄膜與PHB奈米複材之研究
Production of PHB, PHBV, P(3HB-co-HH) and degradation of polyester films by thermophilic bacteria of Caldimonas manganoxidans and PHB nanocomposites
作者: Li-Jung Hsiao
蕭麗蓉
關鍵字: Poly-β-hydroxybutyrate (PHB)
Caldimonas manganoxidans
Degradation polyester films
Batch culture
PHB molecular weight
PHB nanocomposites
聚羥基丁酸酯
嗜熱菌
降解聚酯薄膜
批次搖瓶培養
聚羥基丁酸酯之分子量
聚羥基丁酸酯之奈米複材
引用: 何茂熏,靜電紡絲法製備Fe3O4/聚羥基丁酸酯及其共聚物奈米複合纖維與羥特性研究,中興大學材料工程研究所碩士論文,2012。 莊宗諭,以基因重組大腸桿菌建立二氧化碳固定平台,中興大學化學工程研究所碩士論文,2012。 A. Arun a,*, R. Arthi a, V. Shanmugabalaji c, M. Eyini b. (2009). Microbial production of poly-b-hydroxybutyrate by marine microbes isolated from various marine environments. Bioresource technology 100 (2009) 2320-2323 Alejandra de Almeida, Andrea M. Giordano, Pablo I. Nikel, and M. Julia Pettinari. (2010). Effects of aeration on the synthesis of poly(3-hydroxybutyrate) from glycerol and glucose in recombinant Escherichia coli. Applied and environmental microbiology, Mar. 2010, p. 2036–2040. Alyaa Hamieh, Zakia Olama and Hanafi Holail. (2013). Microbial production of polyhydroxybutyrate, a biodegradable plastic using agro-industrial waste products. Global advanced research journal of microbiology (ISSN: 2315-5116) Vol. 2(3) pp. 054-064, March. Akira Hoshino & Yasuyuki Isono∗. (2002). Degradation of aliphatic polyester films by commercially available lipases with special reference to rapid and complete degradation of poly(L-lactide) film by lipase PL derived from Alcaligenes sp. Biodegradation 13: 141–147, 2002. An introduction to plastics. http://www.plastiquarian.com/userfiles/file/plasticbook.pdf Beom Soo Kim* and Ho Nam Chang. (1998). Production of poly(3-hydroxybutyrate) from starch by Azotobacter chroococcum. Biotechnology letters, Vol 20, No 2, February 1998, pp. 109–112. Chengjun Zhu, Christopher T. Nomura, Joseph A. Perrotta, Arthur J. Stipanovic, James P. Nakas. (2009). Production and characterization of poly-3-hydroxybutyrate from biodiesel-glycerol by Burkholderia cepacia ATCC 17759. Published online december 1, 2009 in wiley inter science. Der-Shyan Sheua,∗,Wen-Ming Chenb, Jr-Yung Yanga, Rey-Chang Changa. (2009). Thermophilic bacterium Caldimonas taiwanensis produces poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from starch and valerate as carbon sources. Enzyme and microbial technology 44 (2009) 289–294. Dieter Jendrossek, Ingrid Knoke, Rahim Bahodjb Habibian, Alexander Steinbfichel, and Hans Giinter Schlegel. (1993). Degradation of poly(3-hydroxybutyrate), PHB, by bacteria and purification of a novel PHB depolymerase from Comamonas sp. Journal of environmental polymer degradation, Vol. 1, No. 1. D. Y. Kim ‧ Y. H. Rhee. (2003). Biodegradation of microbial and synthetic polyesters by fungi. Appl microbiol biotechnol (2003) 61:300–308. Enrico Grothea, Murray Moo-Younga, Yusuf Chistib,*. (1999). Fermentation optimization for the production of poly(β-hydroxybutyric acid) microbial thermoplastic. Enzyme and microbial technology 25 (1999) 132–141. Elsayed B. Belal. (2013). Production of poly-β-hydroxybutyric Acid (PHB) by Rhizobium elti and Pseudomonas stutzeri. Current research journal of biological sciences 5(6): 273-284. Frank A. Jackson* and Edwin A. Dawes. (1976). Regulation of the tricarboxylic acid cycle and poly-p-hydroxybutyrate metabolism in Azotobacter beijerinckii grown under nitrogen or oxygen limitation. Journal of general microbiology (1976), 97,303-312. Fulai Wang and Sang Yup Lee. (1997). Poly(3-Hydroxybutyrate) production with high productivity and high polymer content by a fed-batch culture of Alcaligenes latus under nitrogen limitation. Applied and environmental microbiology, p. 3703–3706. Hardaning Pranamuda1 & Yutaka Tokiwa2,*. (1999). Degradation of poly(L-lactide) by strains belonging to genus Amycolatopsis. Biotechnology letters 21: 901–905, 1999. Hayden K. Webb, Jaimys Arnott, Russell J. Crawford and Elena P. Ivanova*. (2013). Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate). Polymers 2013, 5, 1-18; doi:10.3390/polym5010001. Helena Moralejo-Ga’rate a,b, Robbert Kleerebezem a, Anuska Mosquera-Corral b, Mark C.M. van Loosdrecht a,*. (2013). Impact of oxygen limitation on glycerol-based biopolymer production by bacterial enrichments. Water research 47 (2013) I209~I217. Hidayah Ariffin a,*, Haruo Nishida b,**, Yoshihito Shirai b,c, Mohd Ali Hassan a. (2010). Highly selective transformation of poly[(R)-3-hydroxybutyric acid] into trans-crotonic acid by catalytic thermal degradation. Polymer degradation and stability 95 (2010) 1375~1381. Hideki Abe, Yoshiharu Doi *. (1999). Structural effects on enzymatic degradabilities for poly[(R)-3-hydroxybutyric acid] and its copolymers. International journal of biological macromolecules 25 (1999) 185–192. Hu Xiaoping1, Heng Huimin1, Lu Tao2, Luo Libo2, Liy anbo2, Guo Yuyang1. (2012). Synthesis and Characterization of Ma-Al Layered Double Hydroxides. China powder science and technology. Vol.18 NO.3 Jun. 2012. Jairo Tronto1, Ana Claudia Bordonal2, Zeki Naal3 and Joao Barros Valim2. (2013). Conducting polymers / layered double hydroxides intercalated nanocomposites. DOI: 10.5772/54803. Javier M. Naranjo, John A. Posada, Juan C. Higuita, Carlos A. Cardona*. (2013). Valorization of glycerol through the production of biopolymers: The PHB case using Bacillus megaterium. Bioresource Technology 133 (2013) 38–44. J.C. Quagliano1, F. Amarilla2, E.G. Fernandes3, D. Mata1 and S.S. Miyazaki1,*. (2001). Effect of simple and complex carbon sources, low temperature culture and complex carbon feeding policies on poly-3-hydroxybutyric acid (PHB) content and molecular weight (Mw) from Azotobacter chroococcum 6B. World journal of microbiology & biotechnology 17: 9~14, 2001. Jian-Hao Zhao a,b, Xiao-Qing Wang a, Jun Zeng a, Guang Yang a, Feng-Hui Shi a, Qing Yan a,*. (2005). Biodegradation of poly(butylene succinate-co-butylene adipate) by Aspergillus versicolor. Polymer degradation and stability 90 (2005) 173-179. Jun Xu and Bao-Hua Guo. (2010). Poly(butylene succinate) and its copolymers: research, development and industrialization. Biotechnol. J. 2010, 5, 1149–1163. Keiji Numata 1,2, Hideki Abe 2 and Tadahisa Iwata 2,3,*. (2009). Biodegradability of poly(hydroxyalkanoate) materials. Materials 2009, 2, 1104-1126; doi:10.3390/ma2031104. Keith A. Porter. (2006). Ring opening polymerization of lactide for the synthesis of poly (Lactic Acid). Ken-ichi Kasuya, Yoshio Inoue and Kenji Yamada & Yoshiharu Doi*. (1995). Kinetics of surface hydrolysis of poly[(R)-3-hydroxybutyrate] film by PHB depolymerase from Alcaligenes faecalis Tl. Polymer degradation and stabi1ity 48 ( 1995) 167- 174. Liu Chun, ZHΛNG Xiao-fan. (2005). Application of PHB used in production of degradable plastics and research progress in microbial synthesized PHB. China plastics industry. Li Shen,* Ernst Worrell and Martin Patel. (2010). Present and future development in plastics from biomass. Biofuels, bioprod. Bioref. 4:25–40. Longan Shang, Min Jiang & Ho Nam Chang. (2003). Poly(3-hydroxybutyrate) synthesis in fed-batch culture of Ralstonia eutropha with phosphate limitation under different glucose concentrations. Biotechnology letters 25: 1415–1419. Magda M. Aly, Mona O. Albureikan1, Haddad El Rabey and Saleh A. Kabli. (2013). Effects of culture conditions on growth and poly-β-hydroxybutyric acid production by Bacillus cereus MM7 isolated from soil samples from Saudi Arabia. Life science journal 2013;10(4). Mahmoud M. Berekaa* and Ali M. Al Thawadi. (2012). Biosynthesis of polyhydroxybutyrate (PHB) biopolymer by Bacillus megaterium SW1-2: application of box-behnken design for optimization of process parameters. African journal of microbiology research Vol. 6(4), pp. 838-845, 30 January, 2012. Manufacturing and properties of PHB. http://sundoc.bibliothek.uni-halle.de/diss-online/02/02H017/t2.pdf Marianne Labet and Wim Thielemans*. (2009). Synthesis of polycaprolactone: a review. Chemical society reviews. First published as an advance Article on the web 25th september 2009. Matteo Pietrini, Lex Roes, Martin K. Patel,* and Emo Chiellini*. (2007). Comparative life cycle studies on poly(3-hydroxybutyrate)-based composites as potential replacement for conventional petrochemical plastics. Biomacromolecules 2007, 8, 2210-2218. Miller. (1959). Use of dinitrosaIicyIic acid reagent for determination of reducing sugar. Aanlytical chemistry, 31 (3), pp 426–428. Mohd Bijarimi1,2, Sahrim Ahmad2, Rozaidi Rasid2. (2012). Mechanical, thermal and morphological properties of PLA/PP melt blends. International conference on agriculture, chemical and environmental sciences (ICACES''2012) Oct. 6-7. Mona K. Gouda, Azza E. Swellam, Sanaa H. Omar. (2001). Production of PHB by a Bacillus megaterium strain using sugarcane molasses and corn steep liquor as sole carbon and nitrogen sources. Microbiol. Res. 156, 201–207. Nazan TAMDOĞAN and Uğur Sidal. (2011). Investigation of poly-β-hydroxybutyrate (PHB) production by Bacillus subtilis ATCC 6633 under different conditions. Kafkas Univ Vet Fak Derg17 (Suppl A): S173-S176. Nisha V. Ramadas, Sudheer Kumar Singh, Carlos Ricardo Soccol and Ashok Pandey. (2009). Polyhydroxybutyrate production using agro-industrial residue as substrate by Bacillus sphaericus NCIM 5149. Brazilian archives of biology and technology, Vol.52, n. 1: pp.17-23. Noha Salah Elsayed, Khaled M. Aboshanab*, Mohammad M. Aboulwafa and Nadia A. Hassouna. (2013). Optimization of bioplastic (poly-β-hydroxybutyrate) production by a promising Azomonas macrocytogenes bacterial isolate P173. African journal of microbiology research. Vol. 7(43), pp. 5025-5035, 25 October, 2013. Ojumu, T.V.1*, Yu, J.2 and Solomon, B.O.3. (2004). Production of polyhydroxyalkanoates, a bacterial biodegradable polymer. African journal of biotechnology Vol. 3 (1), pp. 18-24, January 2004. R.A.J. Verlinden, D.J. Hill, M.A. Kenward, C.D. Williams and I. Radecka. (2007). Bacterial synthesis of biodegradable polyhydroxyalkanoates. Journal of applied microbiology ISSN 1364-5072. R. Laxmana Reddy1, V. Sanjeevani Reddy2, G. Anusha Gupta3. (2013) Study of bio-plastics as green & sustainable alternative to plastics. International journal of emerging technology and advanced engineering. ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 3, Issue 5, May 2013. 1R.Sita Lakshmi, 2Hema.T. A., 3Divya .T. Raj, 4Starin Shylaja .T. (2012). Production and Optimization of Polyhydroxybutyrate from Rhizobium sp. present in root nodules. IOSR journal of pharmacy and biological sciences (IOSRJPBS). ISSN : 2278-3008 Volume 3, Issue 2 (Sep-Oct 2012), PP 21-25. Sang Yup Lee*, Jong-il Choi, Heng Ho Wong. (1999). Recent advances in polyhydroxyalkanoate production by bacterial fermentation:mini-review. International journal of biological macromolecules. 25 (1999) 31-36. Sheryl Philip, Sudarshana Sengupta, Tajalli Keshavarz, and Ipsita Roy. (2009). Effect of impeller speed and pH on the production of poly(3-hydroxybutyrate) Using Bacillus cereus SPV. Biomacromolecules 2009, 10, 691–699. S. Kusaka‧H. Abe‧S. Y. Lee‧Y. Doi. (1997). Molecular mass of poly[(R )-3-hydroxybutyric acid] produced in a recombinant Escherichia coli. Appl microbiol biotechnol (1997) 47: 140~143. Suprakas Sinha Ray a,b,*, Jayita Bandyopadhyay b, Mosto Bousmina b,**. (2007). Thermal and thermomechanical properties of poly[(butylene succinate)-co-adipate] nanocomposite. Polymer degradation and stability 92 (2007) 802-812. Te-Kuan Chua1, Min Tseng2 and Mei-Kwei Yang1*. (2013). Degradation of Poly(ε-caprolactone) by thermophilic Streptomyces thermoviolaceus subsp. thermoviolaceus 76T-2. Chua et al. AMB Express 2013, 3:8. V. L. Myshkina, D. A. Nikolaeva, T. K. Makhina, A. P. Bonartsev, and G. A. Bonartseva. (2008). Effect of growth conditions on the molecular weight of poly-3-hydroxybutyrate produced by Azotobacter chroococcum 7B. Applied biochemistry and microbiology, 2008, Vol. 44, No. 5, pp. 482–486. Wendy Amass,* Allan Amass & Brian Tighe. (1998). A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polymer international 47 (1998) 89-144. Yoshiharu Kumagai, Youko Kanesawa, Yoshiharu Doi*. (1992). Enzymatic degradation of microbial poly(3-hydroxybutyrate) films. Makromol. Chem. 193, 53-57 (1992). Yu-Hong Wei 1,*, Wei-Chuan Chen 1, Chin-Kuei Huang 1, Ho-Shing Wu 2, Yi-Ming Sun 1,2, Chi-Wei Lo 2 and Om-Murugan Janarthanan 1. (2011). Screening and evaluation of polyhydroxybutyrate-producing strains from indigenous isolate Cupriavidus taiwanensis strains. Int. J. Mol. Sci. 2011, 12, 252-265; doi:10.3390/ijms12010252. Yutaka Tokiwa‧Buenaventurada P. Calabia. (2006). Biodegradability and biodegradation of poly(lactide). Appl microbiol biotechnol (2006) 72:244–251.
摘要: 由於石化塑膠廢棄不利分解,故需研究具有生物降解特性之材料以取代之。由微生物所自行合成的聚羥基脂肪酸酯 (polyhydroxyalkanoates, PHAs),其具生物可降解及生物可相容之特性,此外亦能儲存於菌體中並能作為碳源及能量的聚酯高分子,以解決當今重要之課題。本實驗研究菌株為Caldimonas manganoxidans,屬於格蘭氏陰性菌、好氧,是由溫泉發現所分離出來之嗜熱菌。由於Caldimonas manganoxidans能生產聚羥基丁酸酯 (Poly-β-hydroxybutyrate, PHB),因此透過批次搖瓶實驗,在不同參數設計如碳源種類、碳源濃度、初始pH、碳氮比、工作體積等因素下,進而得出PHB濃度。其中,當葡萄糖或甘油作為主要單一碳源時,可獲得PHB濃度各別為5.41 ± 1.11 g/L及8.35 ± 1.51 g/L。當甘油50 g/L與戊酸為雙碳源時,僅有在12小時才有PHBV合成,依不同戊酸濃度10、20和30 mM獲得3-HV (%)各占88.08 %、82.08 %和86.09 %。而甘油50 g/L與己酸為雙碳源時,至12~48小時之間皆有P(3-HB-co-3HH)產生,其中含有己酸30 mM在12小時下3-HH (%)可高達為92.14 %。在初始葡萄糖濃度、初始甘油濃度、葡萄糖與溫度、葡萄糖與初始pH、葡萄糖與碳氮比、甘油與初始pH效應中測試PHB分子量,以葡萄糖與初始pH效應之pH 6,雖對細菌代謝生長較不利其產生PHB含量只有19.88 %,但卻可在培養效應中獲得高PHB分子量為975 kDa (PDI為1.13)。實驗設計「菌液培養降解法」,藉由Caldimonas manganoxidans所分泌出的PHB depolymerase,對聚酯高分子如PHB、PCL、PLA、PBSA和PET薄膜進行降解測試。結果PHB薄膜只需6天即可被完全降解,而PCL薄膜則需52天。PLA和PBSA薄膜在76天後,其降解各別為97.7%±0.046和73.8%±0.268。然而,PET薄膜不被PHB depolymerase所降解,雖有10.5% ± 0.029之重量損失,但原因是受到外力撞擊損毀影響,而並非由PHB depolymerase降解所致。TGA熱性質分析發現,當PHB參混OLDH比例越多則熱穩定性就越低,PHB與添加OLDH至5 %之PHB奈米複材,其熱損失5 %之溫度 (T5d)由280.2℃下降到231.9℃。主要是OLDH含有鎂離子具有催化裂解作用,導致其添加比例越多裂解溫度往低溫位移。在DSC分析中一次降溫與二次升溫指出,當OLDH添加至5%時PHB結晶度從58.3 %下降到40.5 %,表示OLDH會阻礙高分子鏈移動性而影響PHB奈米複材之結晶程度,此外進入二次升溫時添加OLDH之PHB會產生熔融再結晶峰,且隨OLDH添加則熔點往低溫位移。利用DMA分析在-10℃時,PHB未加入OLDH之儲存模數為2.52 GPa,而添加OLDH至5 %則提高到22.12 GPa,表示OLDH之二維層狀結構對PHB具有一定支撐作用,以助於PHB奈米複材之機械性質提升。在玻璃轉移溫度Tg中,其隨OLDH比例增加而往低溫位移,PHB之Tg為44.6℃,添加OLDH至5%之Tg為27.3℃。顯示改質LDH中之油酸扮演塑化劑角色導致高分子鏈移動性提高,因此不須在高溫條件下即可讓高分子移動,使得玻璃態轉變為橡膠態,造成玻璃轉移溫度隨OLDH增加而趨於低溫位移。
Due to petrochemical plastic waste is unfavorable to be decomposed, degradation characteristics of the material have to be studied in order to replace petrochemical plastic waste. Microorganisms are able to synthesize polyhydroxyalkanoates (PHAs), and then it can be stored in the bacteria as a polyester polymer of carbon and energy, also has biodegradable properties and is biocompatible with the features to address today''s important issues. This study strain is Caldimonas manganoxidans. The strain belongs to Gram-negative bacteria, aerobic, was found in the hot springs and are separated out of the thermophilic bacteria. Because Caldimonas manganoxidans can produce Poly-β-hydroxybutyrate (PHB), and therefore by batch shake flask experiments under different of parameter design circumstances, such as carbon source, carbon concentration, initial pH, carbon and nitrogen ratio, working volume and other factors, afterwards derive PHB concentration. When glucose or glycerol as the main carbon source for the individual PHB concentration were 5.41 ± 1.11 g/L and 8.35 ± 1.51 g/L. Only the 12 hours had PHBV synthesis when glycerol 50 g/L mixed with valeric acid of concentrations such as 10 mM, 20 mM, or 30 mM. According to different valeric acid concentrations, 10 mM, 20 mM, and 30 mM obtained 3-HV (%) of 88.08 %, 82.08 %, and 86.09 % respectively. Another glycerol 50 g/L mixed with hexanoic acid, there are P (3-HB-co-3HH) between 12 to 48 hours, which contained 30 mM hexanoic acid in 12 hours could obtain 3-HH (%) as high as 92.14 %. In the effect of initial glucose concentration, initial concentration of glycerol, temperature, initial pH, carbon-nitrogen ratio and glycerol with initial pH for PHB molecular weight of the test. It is unfavorable to the growth of bacterial metabolism, which PHB content is only 19.88 %, the effect of initial pH is 6, but the effect of all cultures is the highest PHB Mw of 975 kDa (PDI is 1.13). Experimental design “Bacteria cultures degradation” by Caldimonas manganoxidans secreted out of the PHB depolymerase. Degradation tests were conducted for polyester polymers such as PHB, PCL, PLA, PBSA and PET films. As a result that PHB films were just six days to be completely degraded while PCL films needed 52 days. In 76 days of PLA and PBSA films, the degradation individual was 97.7% ± 0.046 and 73.8% ± 0.268. However, PET films were not degraded by PHB depolymerase. Although weight loss is 10.5% ± 0.029, the reason is affected by external impact damage rather than degraded by enzymes. TGA analysis of thermal properties found that thermal stability was the lower when PHB mixed with much OLDH proportion. Adding OLDH to 5 % of PHB, heat loss of 5 % temperature (T5d) decreased from 280.2℃ to 231.9℃. Mainly, OLDH contains magnesium ions which can have catalytic pyrolysis action. The addition of much OLDH results in shifting to the lower temperature of pyrolysis. In DSC analysis, the first cooling time and the secondary heating noted that when added OLDH to 5 % of PHB, crystallinity decreased from 58.3 % to 40.5 %. Indicating that OLDH hinder the mobility of the polymer chains to affect the degree of crystallinity of PHB nanocomposites. In addition, that PHB blended with OLDH produced into the secondary recrystallization temperature melt peaks. And with OLDH add to the melting point of the low-temperature shift. Using DMA analysis in the -10℃, PHB which the storage modulus of 2.52 GPa didn’t add OLDH. While adding OLDH to 5 % is increased to 22.12 GPa, showing that the two-dimensional layered structure OLDH for PHB has a supporting role to mechanically assist the nature of PHB nanocomposites upgrade. In the glass transition temperature Tg, and its proportion increases with OLDH to low displacement, Tg of PHB is 44.6℃, adding OLDH to 5 % of the Tg is 27.3℃. Display of the modified LDH in the plasticizer plays the role of oleic acid leads to improving the mobility of the polymer chain. Don’t be moved the polymer under high temperature conditions. Such as a rubber having a glass transition state, lead to increasing OLDH and then the glass transition temperature to low displacement.
URI: http://hdl.handle.net/11455/91545
其他識別: U0005-1711201415452200
文章公開時間: 2016-11-24
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.