Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91558
標題: 含烷氧鏈官能基化吡咯併吡咯二酮之側鏈型共軛高分子合成及其光伏特性研究
Synthesis of Diethylene Glycol Functionalized Diketopyrrolopyrrole Derivatives Based Side-Chain Conjugated Polymers For Photovoltaic Solar Cells
作者: Lun-Cheng Yang
楊淪証
關鍵字: diketopyrrolopyrrole
thionphene
photovoltaic performance
bulk heterojunction cell
吡咯併吡咯二酮
噻吩
異質介面有機太陽能電池
引用: 1. M. O’Regan, M. Gratzel, Nature 353, 737, 1991. 2. M. Gratzel, Inorg. Chem. 44, 6841, 2005. 3. W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Science 295, 2425, 2002. 4. C. Y. Kwong, A. B. Djurisic, P. C. Chui, K. W. Cheng, W. K. Chan, Chem. Phys. Lett. 384, 372, 2004. 5. W. J. E. Beek, Martijn, M. Wienk, A. J. Janssen, J. Mater. Chem. 15, 2985, 2005. 6. K. Shankar, G. K. Mor, H. E. Prakasam, O. K. Varghese, C. A. Grimes, Langmuir 23, 12445, 2007. 7. G. Yu, C. Zhang, A. J. Heeger, Appl. Phys. Lett. 64, 1540, 1993. 8. 張正華;李陵嵐;葉楚平;楊平華, 有機太陽電池與塑料太陽電池, 化學工業出版社,北京, 2006 9. N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, Science 258, 1474, 1992. 10. S. Gunes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 107, 1324, 2007. 11. J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti and A. B. Holmes, Appl. Phys. Lett. 68, 3120, 1996. 12. G. Yu, J. Gao, J. Hummelen, F. Wudl and A. J. Heeger, Science 270, 1789, 1995. 13. P. Peumans, S. R. Forrest, Appl. Phys. Lett. 79, 126, 2001. 14. K. Kim, J. Liu, A. G. Namboothiry, D. L. Carroll, Appl. Phys. Lett. 90, 163511, 2007. 15. M.S. Kim, B.G. Kim, J. Kim, ACS Appl Mater Interfaces 1, 1264, 2009. 16. S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, J. C. Hummelen, Appl. Phys. Lett. 78, 841, 2001. 17. F. Padinger, R. S. Rittberger and N. S. Sariciftci, Adv. Funct. Mater. 13, 85, 2003. 18. G. Li, V. Shortriya, Y. Yao, and Y. Yang, J. Appl. Phys. 98, 043704, 2005. 19. J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger,G. C. Bazan, Nat Mater 6, 497, 2007. 20. T.Y. Chu, J.Lu, S.Beaupre,Y.Zhang, J.R.Pouliot, S.Wakim, J.Zhou, M.Leclerc, Z.Li, J.Ding, Y.Tao, J. Am. Chem. Soc. 133, 4250, 2011. 21. B. Walker, C. Kim, T. Q. Nguyen, Chem. Mater. 23, 470, 2011. 22. H. W. Lin, L. Y. Lin, Y. H. Chen, C.W. Chen, Y. T. Lin, S. W. Chiu , K.T. Wong,Chem. Commun. 47, 7872, 2011. 23. Bre’das, J. L., J. Chem. Phys. 82, 3808, 1985 24. Y. J. Cheng,S.H. Yang, C.S. Hsu, Chem. Rev. 109, 5868, 2009. 25. A. Cravino, P. Leriche, O. Aleveque, S. Roquet, J. Roncali, Adv. Mater. 18, 3033, 2006. 26. F. Schlutter, A. Wild, A. Winter, M. D. Hager, A. Baumgaertel, C. Friebe, U. S. Schubert, Macromolecules. 43, 2759, 2010. 27. Y. Liu, M. Nishiura, Y. Wang, Z. Hou, J. Am. Chem. Soc. 128, 5592, 2006. 28. S. Maldonado, D. Knapp, N. S. Lewis, J. Am. Chem. Soc. 130, 3300, 2008. 29. K. E. Martin, Z. Wang, T Busani, R. M. Garcia, Z. Chen, Y. Jiang,Y. Song, J. L. Jacobsen, T. T. Vu, N. E. Schore, B. S. Swartzentruber, C. J. Medforth, J. A. Shelnutt, J. Am. Chem. Soc. 132, 8194, 2010. 30. A. B. Tamayo, B. Walker, T. Q. Nguyen, J. Phys. Chem. C 112, 11545, 2008. 31. E. Wang, M. Wang, L. Wang, C. Duan, J. Zhang, W. Cai, C. He, H. Wu, Y. Cao, Macromolecules. 42, 13, 2009. 32. Y. Li, S. P. Singh, P. Sonar, Adv. Mater. 22, 1, 2010. 33. Y. Li, P. Sonar, S. P. Singh, M. S. Soh, M. V. Meurs, J. Tan, J. Am. Chem. Soc. 133, 2198, 2011. 34. B. J. Jung, K. Lee, J. Sun, A. G. Andreou, H. E. Katz, Adv. Funct. Mater. 20, 2930, 2010. 35. D. G. Farnum,G. Mehta, G. G. I. Moore, F. P. Siegel, Tetrahedron Lett. 29, 2549, 1974. 36. A. C Rochat, L. Cassar and A Iqbal, (Ciba-Geigy Ltd ), US Patent 4579949 1983. 37. Bijleveld, J. C.; Zoombelt, A. P.; Mathijssen, S. G. J.; Wienk, M. M.; Turbiez, M.; de Leeuw, D. M.; Janssen, R. A. J. J. Am. Chem. Soc. 131, 16616, 2009. 38. Naik, M.; Kanimozhi, C.; Nutalapati, V.; Patil, S. J. Phys. Chem. C 116, 26128, 2012. 39. C. Kim, J. Liu, J. Lin, A. B. Tamayo, B. Walker, G. Wu, T. Q. Nguyen, Chem. Mater. 24, 1699, 2012. 40. B. Walker, X. Han, C. Kim, A. Sellinger, T. Q. Nguyen, Appl. Mater. Interfaces. 4, 244, 2012. 41. A. R. Rabindranath, Y. Zhu, I. Heim, B. Tieke, Macromolecules. 39, 8250, 2006. 42. Y. Zhu, I. Heim, B. Tieke, Macro. Chem. Phy. 207, 2206, 2006. 43. K. Takimiya, I. Osaka, M. Nakano. Chem. Mater. 26, 587, 2014. 44. M. M. Wienk, M. Turbiez, J. Gilot, R. A. J. Janssen, Adv. Mater. 20, 2556, 2008. 45. L. Zhang, K. Tajima, K. Hashimoto, Macromolecules. 44, 4222, 2011. 46. Y. Qu, J. Hua, H. Tian, Org. Lett.12, 3320, 2010. 47. L. Deng, W. Wu, H. Guo, J. Zhao, S. Ji, X. Zhang, X. Yuan, C. Zhang, J. Org. Chem. 76, 9294, 2011. 48. H. Bronstein, Z. Chen, R. S. Ashraf, W. Zhang, J. Du, J. R. Durrant, P. S. Tuladhar, K. Song, S. E. Watkins, Y. Geerts, M. M. Wienk, R. A. J. Janssen, T. Anthopoulos, H. Sirringhaus, M. Heeney, I. McCulloch, J. Am. Chem. Soc. 133, 3272, 2011. 49. W. Li, K. H. Hendriks, A. Furlan, W. S. Christian Roelofs, M. M. Wienk, and R. A. J. Janssen., J. Am. Chem. Soc. 135, 18942, 2013. 50. J. Mei, K. R. Graham, R. Stalder, S. P. Tiwari, H. Cheun, J. Shim, M. Yoshio, C. Nuckolls, B. Kippelen, R. K. Castellano, J. R. Reynolds. Chem. Mater. 23, 2285, 2011. 51. F. Zhang, M. Ceder, O. Inganas. Adv. Mater. 19, 1835, 2007. 52. J. Y. Jeng, M. W. Lin, Y. J. Hsu, T. C. Wen, T. F. Guo. Adv. Energy Mater. 1, 1192, 2011. 53. H. J. Wang, Y. P. Chen, Y. C. Chen, C. P. Chen, R. H. Lee, L. H. Chan, R. J. Jeng. Polymer, 53, 4091, 2012. 54. H. J. Wang, J. Y. Tzeng, C. W. Chou, C. Y. Huang, R. H. Lee, R. J. Jeng. Polym. Chem. 4, 506, 2013. 55. Y. J.Cheng, L. C. Hung, F. Y. Cao, W. S. Kao, C. Y. Chang, C. S. Hsu. Polym. Chem. 49, 1791, 2011.
摘要: 本研究以含烷氧鏈官能基化吡咯併吡咯二酮之拉電子基團所形成的主鏈,因為烷氧鏈的供電子性質,使得材料HOMO–LUMO gap較小,且在烷氧鏈段之間存在著非共價鍵的相互作用力,可以幫助材料在吸收上有明顯的紅位移,另外,導入噻吩 (thiophene) 當作π-bridge,延長分子之有效共軛長度,使得材料對光吸收更紅位移;並於側鏈導入triphenylamine/thiophene (TPATh),可幫助共軛高分子在分子內的電荷轉移,使能階隙變小,也促使紫外光-可見光吸收波長有紅位移的現象;另外,導入TPATh側鏈可有效的延伸共軛長度,幫助改善電洞遷移率,更進一步的幫助共軛高分子與PC61BM的相容性,形成二維行式共軛高分子系統。分別合成出共軛高分子PEGA13、PEGA12、PEGA11,另外合成出含烷碳鏈官能基化吡咯併吡咯二酮之拉電子基團所形成的主鏈PEHA13與PEGA系列作比較。經由 1H-NMR 鑑定確認化學結構,並經由 TGA 與 DSC 進行熱性質分析,獲得PEHA13、PEGA13、PEGA12、PEGA11之熱裂解溫度分別為412.3℃、398.5℃、347.1℃、319.8℃,PEGA13、PEGA12、PEGA11玻璃轉換溫度分別為153.42℃、142.89℃、148.87℃,其中PEHA13材料之玻璃轉移溫度不明顯,四個材料均具有優越的熱穩定性。經由 UV-Vis 吸收光譜分析,結果顯示 PEHA13 於薄膜狀態下之最大吸收波長在438.0 nm與700.0 nm ; PEGA13 於薄膜狀態下之最大吸收波長在 447.0 nm與 714.0nm;PEGA12於薄膜狀態下之最大吸收波長在 439.5 nm與 733.0nm;PEGA11於薄膜狀態下之最大吸收波長在 441.5 nm與 707.0nm,四種均在波長 350 nm ~ 900 nm有明顯的吸收,藉由吸收波長計算出PEHA13、PEGA13、PEGA12、PEGA11 的能隙分別為 1.46 eV、1.42 eV、1.38 eV、1.38 eV。利用循環伏安法分析 PEHA13、PEGA13、PEGA12、PEGA11 之HOMO 分別為 -4.96 eV、-4.97 eV、-5.09 eV、-5.11 eV,而LUMO分別為 -3.50 eV、-3.55 eV、-3.71 eV、-3.73 eV。當 PEHA13混摻 PC61BM (1:2, w/w) 時,其元件在光伏特性上的表現最佳,PEHA13電洞遷移率Hole mobility為 2.84×10-5、開路電壓 VOC 為 0.63 V 、短路電流JSC 為7.5 mA/cm2 、填充因子FF 為0.34 及光電轉換效率PCE 為1.58 %;PEGA13 混摻 PC61BM (1:2, w/w) 時,其元件在光伏特性上的表現最佳,PEGA13電洞遷移率Hole mobility為 2.04×10-5、開路電壓 VOC 為 0.63 V 、短路電流JSC 為7.7 mA/cm2 、填充因子FF 為0.41 及光電轉換效率PCE 為1.95 %。最後進一步得以 PEHA13/PC71BM 混摻比例為1:2 及 PEGA13/PC71BM 摻混比例為 1:2 的材料,當 PEHA13/PC71BM 混摻比例為1:2 時,電洞遷移率Hole mobility 為 3.17×10-5、開路電壓 VOC 為 0.67 V 、短路電流JSC 為9.0 mA/cm2 、填充因子FF 為0.42 及光電轉換效率PCE 為2.55 %;當 PEGA13/PC71BM 混摻比例為1:2 時,電洞遷移率Hole mobility 為 3.32×10-5、開路電壓 VOC 為 0.64 V 、短路電流JSC 為13.2 mA/cm2 、填充因子FF 為0.37 及光電轉換效率PCE 為3.10 %。
We synthesized four two-dimensional (2-D) conjugated polymers, including diethylene glycol functionalized diketopyrrolopyrrole derivatives PEGA13, PEGA12, PEGA11, and 2-ethylhexyl functionalized diketopyrrolopyrrole derivative PEHA13 featuring thionphene as π-conjugation bridge in the polymer backbones and appending conjugated triphenylamine/thiophene (TPATh) moieties on the side chains. Excellent thermal stability was observed for PEGA13, PEGA12, PEGA11, and PEHA13. Incorporating the thiophene into the polymer backbones and appending TPATh units indused high degrees of intramolecular charge transfer within the conjugated framework of the polymers, thereby resulting in low band gap energies and red-shifting of the maximal UV-Vis absorption wavelengths. The PEGA13, PEGA12, PEGA11, and PEHA13 show two absorption bands in the range of 350-900 nm, corresponding to the band gaps of 1.42, 1.38, 1.38, 1.46 eV, respectively. The performance of the OSCs was modified significantly with varied of PEGA13 (or PEHA13)/PC61BM (or PC71BM) weigh ratio. A power conversion efficiency of 3.1 %, a short-circuit current density of 13.2 mA/cm2, an open-circuit voltage of 0.64 V, a fill factor of 0.37, and a hole mobility of 3.32×10-5 were observed for OSCs based on the active layer of PEGA13/PC71BM (1:2, w/w).
URI: http://hdl.handle.net/11455/91558
其他識別: U0005-2212201414530000
文章公開時間: 2017-12-23
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.