Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91564
標題: 固定化脂肪酶製備方法、特性及應用於產製生質柴油之評估分析
Evaluation on the preparation, characterization, application and biodiesel production for lipase immobilization
作者: Chien-Hsun Chen
陳建勳
關鍵字: lipase immobilization
activator
support
biodiesel
酵素固定化
活化劑
載體
生質柴油
引用: 參考文獻 1. K.R. Jegannathan, S. Abang, D. Poncelet, E.S. Chan, and P. Ravindra. Production of Biodiesel Using Immobilized LipaseA Critical Review. Crit Rev Biotechnol. 28:253-264 (2008). 2. T.W. Tan, J.K. Lu, K.L. Nie, L. Deng, and F. Wang. Biodiesel production with immobilized lipase: A review. Biotechnol Adv. 28:628-634 (2010). 3. A. Kilinc, S. Onal, and A. Telefoncu. Chemical attachment of porcine pancreatic lipase to crosslinked poly(vinyl alcohol) by means of adipoyldichloride. Process Biochem. 38:641-647 (2002). 4. A. Houde, A. Kademi, and D. Leblanc. Lipases and their industrial applications - An overview. Applied Biochemistry and Biotechnology. 118:155-170 (2004). 5. H. Fukuda, A. Kondo, and H. Noda. Biodiesel fuel production by transesterification of oils. J Biosci Bioeng. 92:405-416 (2001). 6. A.R. Macrae. LIPASE-CATALYZED INTERESTERIFICATION OF OILS AND FATS. Journal of the American Oil Chemists Society. 60:291-294 (1983). 7. K.E. Jaegerand M.T. Reetz. Microbial lipases form versatile tools for biotechnology. Trends Biotechnol. 16:396-403 (1998). 8. C. Mateo, J.M. Palomo, G. Fernandez-Lorente, J.M. Guisan, and R. Fernandez-Lafuente. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol. 40:1451-1463 (2007). 9. J.J. Yang, X.X. Ma, Z.S. Zhang, B. Chen, S.A. Li, and G.J. Wang. Lipase immobilized by modification-coupled and adsorption-cross-linking methods: A comparative study. Biotechnol Adv. 28:644-650 (2010). 10. P. Villeneuve, J.M. Muderhwa, J. Graille, and M.J. Haas. Customizing lipases for biocatalysis: a survey of chemical, physical and molecular biological approaches. J Mol Catal B-Enzym. 9:113-148 (2000). 11. A. Pandey, S. Benjamin, C.R. Soccol, P. Nigam, N. Krieger, and V.T. Soccol. The realm of microbial lipases in biotechnology. Biotechnology and Applied Biochemistry. 29:119-131 (1999). 12. G.J. Chen, C.H. Kuo, C.I. Chen, C.C. Yu, C.J. Shieh, and Y.C. Liu. Effect of membranes with various hydrophobic/hydrophilic properties on lipase immobilized activity and stability. J Biosci Bioeng. 113:166-172 (2012). 13. T.C. Hung, R. Giridhar, S.H. Chiou, and W.T. Wu. Binary immobilization of Candida rugosa lipase on chitosan. J Mol Catal B-Enzym. 26:69-78 (2003). 14. P. Ye, Z.K. Xu, A.F. Che, J. Wu, and P. Seta. Chitosan-tethered poly(acrylonitrile-co-maleic acid) hollow fiber membrane for lipase immobilization. Biomaterials. 26:6394-6403 (2005). 15. S.F. Li, J.P. Chen, and W.T. Wu. Electrospun polyacrylonitrile nanofibrous membranes for lipase immobilization. J Mol Catal B-Enzym. 47:117-124 (2007). 16. X.J. Huang, A.G. Yu, and Z.K. Xu. Covalent immobilization of lipase from Candida rugosa onto poly(acrylonitrile-co-2-hydroxyethyl methacrylate) electrospun fibrous membranes for potential bioreactor application. Bioresour Technol. 99:5459-5465 (2008). 17. X.J. Huang, D. Ge, and Z.K. Xu. Preparation and characterization of stable chitosan nanofibrous membrane for lipase immobilization. European Polymer Journal. 43:3710-3718 (2007). 18. X.J. Huang, A.G. Yu, J. Jiang, C. Pan, J.W. Qian, and Z.K. Xu. Surface modification of nanofibrous poly(acrylonitrile-co-acrylic acid) membrane with biomacromolecules for lipase immobilization. J Mol Catal B-Enzym. 57:250-256 (2009). 19. V.M. Balcao, A.L. Paiva, and F.X. Malcata. Bioreactors with immobilized lipases: State of the art. Enzyme Microb Technol. 18:392-416 (1996). 20. S.W. Tsaiand S.S. Shaw. Selection of hydrophobic membranes in the lipase-catalyzed hydrolysis of olive oil. Journal of Membrane Science. 146:1-8 (1998). 21. P. Lozano, A.B. Perez-Marin, T. De Diego, D. Gomez, D. Paolucci-Jeanjean, M.P. Belleville, G.M. Rios, and J.L. Iborra. Active membranes coated with immobilized Candida antarctica lipase B: preparation and application for continuous butyl butyrate synthesis in organic media. Journal of Membrane Science. 201:55-64 (2002). 22. H. Noureddini, X. Gao, and R.S. Philkana. Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour Technol. 96:769-777 (2005). 23. I. Belhaj-Ben Romdhane, Z. Ben Romdhane, A. Gargouri, and H. Belghith. Esterification activity and stability of Talaromyces thermophilus lipase immobilized onto chitosan. J Mol Catal B-Enzym. 68:230-239 (2011). 24. M.L. Forestiand M.L. Ferreira. Chitosan-immobilized lipases for the catalysis of fatty acid esterifications. Enzyme Microb Technol. 40:769-777 (2007). 25. J. Tantrakulsiri, N. Jeyashoke, and K. Krisanangkura. Utilization of rice hull ash as a support material for immobilization of Candida cylindracea lipase. Journal of the American Oil Chemists Society. 74:173-175 (1997). 26. J.M. Obon, M.R. Castellar, J.L. Iborra, and A. Manjon. beta-galactosidase immobilization for milk lactose hydrolysis: a simple experimental and modelling study of batch and continuous reactors. Biochemical Education. 28:164-168 (2000). 27. B. Krajewska. Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme Microb Technol. 35:126-139 (2004). 28. Y.Y. Linko, M. Lamsa, X.Y. Wu, E. Uosukainen, J. Seppala, and P. Linko. Biodegradable products by lipase biocatalysis. J Biotechnol. 66:41-50 (1998). 29. H. Ghamgui, M. Karra-Chaabouni, and Y. Gargouri. 1-butyl oleate synthesis by immobilized lipase from Rhizopus oryzae: a comparative study between n-hexane and solvent-free system. Enzyme Microb Technol. 35:355-363 (2004). 30. A. Bajaj, P. Lohan, P.N. Jha, and R. Mehrotra. Biodiesel production through lipase catalyzed transesterification: An overview. J Mol Catal B-Enzym. 62:9-14 (2010). 31. C.E. Orrego, J.S. Valencia, and C. Zapata. Candida rugosa Lipase Supported on High Crystallinity Chitosan as Biocatalyst for the Synthesis of 1-Butyl Oleate. Catalysis Letters. 129:312-322 (2009). 32. W. Du, Y.Y. Xu, D.H. Liu, and J. Zeng. Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. J Mol Catal B-Enzym. 30:125-129 (2004). 33. S. Shah, S. Sharma, and M.N. Gupta. Biodiesel preparation by lipase-catalyzed transesterification of Jatropha oil. Energy Fuels. 18:154-159 (2004). 34. S. Shahand M.N. Gupta. Lipase catalyzed preparation of biodiesel from Jatropha oil in a solvent free system. Process Biochem. 42:409-414 (2007). 35. M. Iso, B.X. Chen, M. Eguchi, T. Kudo, and S. Shrestha. Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase. J Mol Catal B-Enzym. 16:53-58 (2001). 36. A. Salis, M. Pinna, M. Monduzzi, and V. Solinas. Comparison among immobilised lipases on macroporous polypropylene toward biodiesel synthesis. J Mol Catal B-Enzym. 54:19-26 (2008). 37. J.A. Silva, G.P. Macedo, D.S. Rodrigues, R.L.C. Giordano, and L.R.B. Goncalves. Immobilization of Candida antarctica lipase B by covalent attachment on chitosan-based hydrogels using different support activation strategies. Biochemical Engineering Journal. 60:16-24 (2012). 38. A.A. Mendes, H.F. de Castro, D.D. Rodrigues, W.S. Adriano, P.W. Tardioli, E.J. Mammarella, R.D. Giordano, and R.D.C. Giordano. Multipoint covalent immobilization of lipase on chitosan hybrid hydrogels: influence of the polyelectrolyte complex type and chemical modification on the catalytic properties of the biocatalysts. J Ind Microbiol Biotechnol. 38:1055-1066 (2011). 39. J.M. Guis?n. Aldehyde–agarose gels as activated supports for immobilization-stabilization of enzymes. Enzyme Microb Technol. 10:375–382 (1988). 40. W.S. Adriano, E.H.C. Filho, J.A. Silva, R.L.C. Giordano, and L.R.B. Goncalves. Stabilization of penicillin G acylase by immobilization on glutaraldehyde-activated chitosan. Braz J Chem Eng. 22:529-538 (2005). 41. H.C.T. Cardias, C.C. Grininger, H.C. Trevisan, J.M. Guisan, and R.L.C. Giordano. Influence of activation on the multipoint immobilization of penicillin G acylase on macroporous silica. Braz J Chem Eng. 16:141-148 (1999). 42. J.M. Guisan. Aldehyde gels as activated support for immobilization- stabilization of enzymes. Enzyme Microb Technol. 10:375–382 (1988). 43. M.M. Beppu, E.J. Arruda, R.S. Vieira, and N.N. Santos. Adsorption of Cu(II) on porous chitosan membranes functionalized with histidine. Journal of Membrane Science. 240:227-235 (2004). 44. D.S. Rodrigues, A.A. Mendes, W.S. Adriano, L.R.B. Goncalves, and R.L.C. Giordano. Multipoint covalent immobilization of microbial lipase on chitosan and agarose activated by different methods. J Mol Catal B-Enzym. 51:100-109 (2008). 45. R. Fernandez-Lafuente, C.M. Rosell, V. Rodriguez, C. Santana, G. Soler, A. Bastida, and J.M. Guisan. Preparation of activated supports containing low pK amino groups. A new tool for protein immobilization via the carboxyl coupling method. Enzyme Microb Technol. 15:546-550 (1993). 46. M.M. Soumanouand U.T. Bornscheuer. Improvement in lipase-catalyzed synthesis of fatty acid methyl esters from sunflower oil. Enzyme Microb Technol. 33:97-103 (2003). 47. M. Kaieda, T. Samukawa, A. Kondo, and H. Fukuda. Effect of methanol and water contents on production of biodiesel fuel from plant oil catalyzed by various lipases in a solvent-free system. J Biosci Bioeng. 91:12-15 (2001). 48. F. Yagiz, D. Kazan, and A.N. Akin. Biodiesel production from waste oils by using lipase immobilized on hydrotalcite and zeolites. Chemical Engineering Journal. 134:262-267 (2007). 49. Y. Yucel, C. Demir, N. Dizge, and B. Keskinler. Lipase immobilization and production of fatty acid methyl esters from canola oil using immobilized lipase. Biomass Bioenerg. 35:1496-1501 (2011). 50. O. Aybastierand C. Demir. Optimization of immobilization conditions of Thermomyces lanuginosus lipase on styrene-divinylbenzene copolymer using response surface methodology. J Mol Catal B-Enzym. 63:170-178 (2010). 51. N. Dizge, B. Keskinler, and A. Tanriseven. Covalent attachment of microbial lipase onto microporous styrene-divinylbenzene copolymer by means of polyglutaraldehyde. Colloid Surf B-Biointerfaces. 66:34-38 (2008). 52. N. Dizge, B. Keskinler, and A. Tanriseven. Biodiesel production from canola oil by using lipase immobilized onto hydrophobic microporous styrene-divinylbenzene copolymer. Biochemical Engineering Journal. 44:220-225 (2009). 53. Y.C. Liu, S.Y. Suen, C.W. Huang, and C.C. ChangChien. Effects of spacer arm on penicillin G acylase purification using immobilized metal affinity membranes. Journal of Membrane Science. 251:201-207 (2005). 54. W. Guoand E. Ruckenstein. Crosslinked glass fiber affinity membrane chromatography and its application to fibronectin separation. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences. 795:61-72 (2003). 55. Y.H. Tsai, M.Y. Wang, and S.Y. Suen. Purification of hepatocyte growth factor using polyvinyldiene fluoride-based immobilized metal affinity membranes: equilibrium adsorption study. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences. 766:133-143 (2002). 56. W.N. Li, B.Q. Chen, and T.W. Tan. Comparative study of the properties of lipase immobilized on nonwoven fabric membranes by six methods. Process Biochem. 46:1358-1365 (2011). 57. B.Q. Chen, C.H. Yin, Y.Y. Cheng, W.N. Li, Z.A. Cao, and T.W. Tan. Using silk woven fabric as support for lipase immobilization: The effect of surface hydrophilicity/hydrophobicity on enzymatic activity and stability. Biomass Bioenerg. 39:59-66 (2012). 58. J.K. Lu, L. Deng, R. Zhao, R.S. Zhang, F. Wang, and T.W. Tan. Pretreatment of immobilized Candida sp 99-125 lipase to improve its methanol tolerance for biodiesel production. J Mol Catal B-Enzym. 62:15-18 (2010). 59. K.L. Nie, F. Xie, F. Wang, and T.W. Tan. Lipase catalyzed methanolysis to produce biodiesel: Optimization of the biodiesel production. J Mol Catal B-Enzym. 43:142-147 (2006). 60. S. Hu, F. Wang, and T. Tan. Synthesis of diglycerides by enzymatic esterification using immobilized lipase from Candida sp. 99–125 in a solvent-free system. Beijing Univ Chem Technol. 34:196-199 (2007). 61. T.W. Tan, B.Q. Chen, and H. Ye. Enzymatic synthesis of 2-ethylhexyl palmitate by lipase immobilized on fabric membranes in the batch reactor. Biochemical Engineering Journal. 29:41-45 (2006). 62. J. Lu, K.L. Nie, F. Wang, and T.W. Tan. Immobilized lipase Candida sp 99-125 catalyzed methanolysis of glycerol trioleate: Solvent effect. Bioresour Technol. 99:6070-6074 (2008). 63. Y. Yucel. Biodiesel production from pomace oil by using lipase immobilized onto olive pomace. Bioresour Technol. 102:3977-3980 (2011). 64. R. Fernandezlafuente, D.A. Cowan, and A.N.P. Wood. HYPERSTABILIZATION OF A THERMOPHILIC ESTERASE BY MULTIPOINT COVALENT ATTACHMENT. Enzyme Microb Technol. 17:366-372 (1995). 65. J.M. Palomo, C. Ortiz, G. Fernandez-Lorente, M. Fuentes, J.M. Guisan, and R. Fernandez-Lafuente. Lipase-lipase interactions as a new tool to immobilize and modulate the lipase properties. Enzyme Microb Technol. 36:447-454 (2005). 66. L.L. Li, W. Du, D.H. Liu, L. Wang, and Z.B. Li. Lipase-catalyzed transesterification of rapeseed oils for biodiesel production with a novel organic solvent as the reaction medium. J Mol Catal B-Enzym. 43:58-62 (2006). 67. D. Royon, M. Daz, G. Ellenrieder, and S. Locatelli. Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresour Technol. 98:648-653 (2007). 68. Y. Wang, H. Wu, and M.H. Zong. Improvement of biodiesel production by lipozyme TL IM-catalyzed methanolysis using response surface methodology and acyl migration enhancer. Bioresour Technol. 99:7232-7237 (2008). 69. L. Wei-Na, C. Bi-Qiang, and T. Tian-Wei. Esterification synthesis of ethyl oleate in solvent-free system catalyzed by lipase membrane from fermentation broth. Applied Biochemistry and Biotechnology. 163:102-111 (2011). 70. K. Deuchi, O. Kanauchi, Y. Imasato, and E. Kobayashi. EFFECT OF THE VISCOSITY OR DEACETYLATION DEGREE OF CHITOSAN ON FECAL FAT EXCRETED FROM RATS FED ON A HIGH-FAT DIET. Biosci Biotechnol Biochem. 59:781-785 (1995).
摘要: 本論文探討脂肪水解酵素(lipase)固定化之效應比較,在文獻中比較載體的使用,搭配適當的活化劑進行改質,再將所需要的酵素以固定化技術與此載體做結合,期望固定於載體上的酵素,其活性表現更穩定,同時藉由固定化技術,讓酵素進行操作反應後能夠易於回收,達到重複使用之功效;另外固定化技術也能使酵素操作在不同酸鹼環境與溫度狀態下,搭配固定化時間與酵素濃度,使固定化獲得更好的轉化效率。 本論文針對多篇文獻在lipase固定化應用上,其載體選擇、活化劑與製備方法、酵素種類、固定後酵素量、固定後酵素活性、酸鹼穩定性、熱穩定性、重複使用性、儲存能力以及產製生質柴油之轉酯化效率,深入探討並進行比較與評估。其中載體選擇分為chitosan、STY-DVB、纖維膜三大類;使用酵素以Thermomyces lanuginosus lipase (TLL)與Candida菌屬的脂肪?為主;酵素與載體間形成共價鍵結;綜合比較後,結果以使用橄欖果渣為載體、PGA為活化劑,可得固定後最高酵素量18.67 mg protein/g support;當使用chitosan為載體、GA為活化劑時,得到最佳酵素活性433 U/g support;且經重複反應使用10次後,酵素殘餘活性保有97%;儲存30天後活性保有98%;最佳轉酯化能力分別為反應3小時後生質柴油產率95%,以及反應12小時後生質柴油產率100%。因此以chitosan為載體、活化劑使用為2%的glutaraldehyde,搭配Candida菌屬的lipase,為lipase固定化中最具商業應用潛力的固定技術組合。
URI: http://hdl.handle.net/11455/91564
其他識別: U0005-2811201416194841
文章公開時間: 2017-08-31
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.