Please use this identifier to cite or link to this item:
標題: 多層壁奈米碳管-三氧化二鋁包覆二氧化矽奈米顆粒複合材料薄膜作為葡萄糖生物燃料電池之探討
Glucose biofuels based on multiwalled carbon nanotubes-alumina-coated silica nanoparticles composite films
作者: Chih-Jyun Chiu
關鍵字: alumina-coated silica
glucose oxidase
mutiwalled carbon nanotubes
biofuel cell
引用: [1] E. Antolini, 'Catalysts for direct ethanol fuel cells,' Journal of Power Sources, vol. 170, pp. 1-12, 6/30/ 2007. [2] H. Hou, G. Sun, R. He, Z. Wu, and B. Sun, 'Alkali doped polybenzimidazole membrane for high performance alkaline direct ethanol fuel cell,' Journal of Power Sources, vol. 182, pp. 95-99, 7/15/ 2008. [3] L. Jiang, G. Sun, Z. Zhou, W. Zhou, and Q. Xin, 'Preparation and characterization of PtSn/C anode electrocatalysts for direct ethanol fuel cell,' Catalysis Today, vol. 93–95, pp. 665-670, 9/1/ 2004. [4] W. J. Zhou, S. Q. Song, W. Z. Li, Z. H. Zhou, G. Q. Sun, Q. Xin, et al., 'Direct ethanol fuel cells based on PtSn anodes: the effect of Sn content on the fuel cell performance,' Journal of Power Sources, vol. 140, pp. 50-58, 1/10/ 2005. [5] C. Rice, S. Ha, R. I. Masel, P. Waszczuk, A. Wieckowski, and T. Barnard, 'Direct formic acid fuel cells,' Journal of Power Sources, vol. 111, pp. 83-89, 9/18/ 2002. [6] C. Rice, S. Ha, R. I. Masel, and A. Wieckowski, 'Catalysts for direct formic acid fuel cells,' Journal of Power Sources, vol. 115, pp. 229-235, 4/10/ 2003. [7] Y. Zhu, Z. Khan, and R. I. Masel, 'The behavior of palladium catalysts in direct formic acid fuel cells,' Journal of Power Sources, vol. 139, pp. 15-20, 1/4/ 2005. [8] L. Zhang, Y. Tang, J. Bao, T. Lu, and C. Li, 'A carbon-supported Pd-P catalyst as the anodic catalyst in a direct formic acid fuel cell,' Journal of Power Sources, vol. 162, pp. 177-179, 11/8/ 2006. [9] M. H. Atwan, C. L. B. Macdonald, D. O. Northwood, and E. L. Gyenge, 'Colloidal Au and Au-alloy catalysts for direct borohydride fuel cells: Electrocatalysis and fuel cell performance,' Journal of Power Sources, vol. 158, pp. 36-44, 7/14/ 2006. [10] C. P. de Leon, F. C. Walsh, D. Pletcher, D. J. Browning, and J. B. Lakeman, 'Direct borohydride fuel cells,' Journal of Power Sources, vol. 155, pp. 172-181, 4/21/ 2006. [11] J.-H. Wee, 'Which type of fuel cell is more competitive for portable application: Direct methanol fuel cells or direct borohydride fuel cells?,' Journal of Power Sources, vol. 161, pp. 1-10, 10/20/ 2006. [12] J. Larminie, A. Dicks, and M. S. McDonald, Fuel cell systems explained vol. 2: Wiley New York, 2003. [13] 高漢昌, '利用逆微胞法製備直接甲醇燃料電池 PtRu 奈米陽極觸媒之研究,' 2007. [14] 楊志忠, 林頌恩, and 韋文誠, '燃料電池的發展現況,' ed: 科學發展, 2003. [15] '' [16] M. C. Potter, 'Electrical Effects Accompanying the Decomposition of Organic Compounds,' Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, vol. 84, pp. 260-276, 1911. [17] A. T. Yahiro, S. M. Lee, and D. O. Kimble, 'Bioelectrochemistry: I. Enzyme utilizing bio-fuel cell studies,' Biochimica et Biophysica Acta (BBA) - Specialized Section on Biophysical Subjects, vol. 88, pp. 375-383, 9/25/ 1964. [18] A. J. Appleby, Fuel cell handbook, 1988. [19] W. J. Aston and A. P. F. Turner, 'Biosensors and Biofuel Cells,' Biotechnology and Genetic Engineering Reviews, vol. 1, pp. 89-120, 1984/02/01 1984. [20] E. Katz, I. Willner, and A. B. Kotlyar, 'A non-compartmentalized glucose ∣ O2 biofuel cell by bioengineered electrode surfaces,' Journal of Electroanalytical Chemistry, vol. 479, pp. 64-68, 12/15/ 1999. [21] G. T. R. Palmore and M. Whitesides George, 'Microbial and Enzymatic Biofuel Cells,' in Enzymatic Conversion of Biomass for Fuels Production. vol. 566, ed: American Chemical Society, 1994, pp. 271-290. [22] A. Heller, 'Miniature biofuel cells,' Physical Chemistry Chemical Physics, vol. 6, pp. 209-216, 2004. [23] E. Katz and I. Willner, 'Biofuel Cells Based on Monolayer- Functionalized Biocatalytic Electrodes,' in Advanced Macromolecular and Supramolecular Materials and Processes, K. Geckeler, Ed., ed: Springer US, 2003, pp. 175-196. [24] G. T. R. Palmore and G. M. Whitesides, 'Microbial and enzymatic biofuel cells,' Enzymatic conversion of biomass for fuels production, vol. 566, pp. 271-290, 1994. [25] W. Aston and A. Turner, 'Biotechnol,' Gen. Eng. Rev, vol. 1, p. 89, 1982. [26] P. Bennetto, 'Microbes come to power,' New Scientist, vol. 114, pp. 36-39, 1987. [27] W. Vielstich, A. Lamm, and H. A. Gasteiger, Handbook of Fuel Cells: Fundamentals Technology and Applications. Vol. 3, Fuel Cell Technology and Applications: Wiley, 2003. [28] S. Calabrese Barton, J. Gallaway, and P. Atanassov, 'Enzymatic biofuel cells for implantable and microscale devices,' Chemical Reviews, vol. 104, pp. 4867-4886, 2004. [29] A. Shukla, P. Suresh, S. Berchmans, and A. Rajendran, 'Biological fuel cells and their applications,' Current Science, vol. 87, pp. 455-468, 2004. [30] R. A. Bullen, T. Arnot, J. Lakeman, and F. Walsh, 'Biofuel cells and their development,' Biosensors and Bioelectronics, vol. 21, pp. 2015-2045, 2006. [31] N. Mano, F. Mao, and A. Heller, 'Characteristics of a Miniature Compartment-less Glucose−O2 Biofuel Cell and Its Operation in a Living Plant,' Journal of the American Chemical Society, vol. 125, pp. 6588-6594, 2003/05/01 2003. [32] E. Katz, A. F. Buckmann, and I. Willner, 'Self-Powered Enzyme-Based Biosensors,' Journal of the American Chemical Society, vol. 123, pp. 10752-10753, 2001/10/01 2001. [33] C. M. Moore, S. D. Minteer, and R. S. Martin, 'Microchip-based ethanol/oxygen biofuel cell,' Lab on a Chip, vol. 5, pp. 218-225, 2005. [34] G.-C. Gil, I.-S. Chang, B. H. Kim, M. Kim, J.-K. Jang, H. S. Park, et al., 'Operational parameters affecting the performannce of a mediator-less microbial fuel cell,' Biosensors and Bioelectronics, vol. 18, pp. 327-334, 4// 2003. [35] H. Liu and B. E. Logan, 'Electricity Generation Using an Air-Cathode Single Chamber Microbial Fuel Cell in the Presence and Absence of a Proton Exchange Membrane,' Environmental Science & Technology, vol. 38, pp. 4040-4046, 2004/07/01 2004. [36] K. Rabaey, N. Boon, S. D. Siciliano, M. Verhaege, and W. Verstraete, 'Biofuel Cells Select for Microbial Consortia That Self-Mediate Electron Transfer,' Applied and Environmental Microbiology, vol. 70, pp. 5373-5382, September 1, 2004 2004. [37] B. E. Logan, 'Simultaneous wastewater treatment and biological electricity generation,' Water Science & Technology, vol. 52, pp. 31-37, 2005. [38] I. Kelly, 'The design of a robotic predator: The SlugBot,' Robotica, vol. 21, pp. 399-406, 2003. [39] Enzymatic Conversion of Biomass for Fuels Production vol. 566: American Chemical Society, 1994. [40] E. Katz, A. Shipway, and I. Willner, 'Handbook of fuel cells: fundamentals, technology, and applications,' Biochemical Fuel Cells, vol. 1, pp. 1-27, 2003. [41] R. Hynes, 'Fibronectin and Its Relation to Cellular Structure and Behavior,' in Cell Biology of Extracellular Matrix, E. Hay, Ed., ed: Springer US, 1981, pp. 295-334. [42] I. Karube, T. Matsunaga, S. Mitsuda, and S. Suzuki, 'Microbial electrode BOD sensors,' Biotechnology and Bioengineering, vol. 19, pp. 1535-1547, 1977. [43] S. Suzuki, I. Karube, T. Matsunaga, S. Kuriyama, N. Suzuki, T. Shirogami, et al., 'Biochemical energy conversion using immobilized whole cells of Clostridium butyricum,' Biochimie, vol. 62, pp. 353-358, 6/10/ 1980. [44] I. Ardeleanu, D.-G. Margineanu, and H. Vais, 'Electrochemical conversion in biofuel cells using Clostridium butyricum or Staphylococcus aureus Oxford,' Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 156, pp. 273-277, // 1983. [45] D. H. Park and J. G. Zeikus, 'Electricity generation in microbial fuel cells using neutral red as an electronophore,' Applied and environmental microbiology, vol. 66, pp. 1292-1297, 2000. [46] C. E. Reimers, L. M. Tender, S. Fertig, and W. Wang, 'Harvesting Energy from the Marine Sediment−Water Interface,' Environmental Science & Technology, vol. 35, pp. 192-195, 2001/01/01 2000. [47] S. Tsujimura, A. Wadano, K. Kano, and T. Ikeda, 'Photosynthetic bioelectrochemical cell utilizing cyanobacteria and water-generating oxidase,' Enzyme and Microbial Technology, vol. 29, pp. 225-231, 9/5/ 2001. [48] B. Zhu, X. Y. Bai, G. X. Chen, W. M. Yi, and M. Bursell, 'Fundamental study on biomass-fuelled ceramic fuel cell,' International Journal of Energy Research, vol. 26, pp. 57-66, 2002. [49] D. Wang and L. Chen, 'Facile direct electron transfer in glucose oxidase modified electrodes,' Electrochimica Acta, vol. 54, pp. 4316-4320, 7/15/ 2009. [50] J.-F. Wu, M.-Q. Xu, and G.-C. Zhao, 'Graphene-based modified electrode for the direct electron transfer of Cytochrome c and biosensing,' Electrochemistry Communications, vol. 12, pp. 175-177, 1// 2010. [51] W. Zheng, H. Y. Zhao, J. X. Zhang, H. M. Zhou, X. X. Xu, Y. F. Zheng, et al., 'A glucose/O2 biofuel cell base on nanographene platelet-modified electrodes,' Electrochemistry Communications, vol. 12, pp. 869-871, 7// 2010. [52] M. R. Tarasevich, A. I. Yaropolov, V. A. Bogdanovskaya, and S. D. Varfolomeev, '293 - Electrocatalysis of a cathodic oxygen reduction by laccase,' Bioelectrochemistry and Bioenergetics, vol. 6, pp. 393-403, 9// 1979. [53] W. Liang and Y. Zhuobin, 'Direct Electrochemistry of Glucose Oxidase at a Gold Electrode Modified with Single-Wall Carbon Nanotubes,' Sensors, vol. 3, pp. 544-554, 2003. [54] J. Kim, H. Jia, and P. Wang, 'Challenges in biocatalysis for enzyme-based biofuel cells,' Biotechnology Advances, vol. 24, pp. 296-308, 5// 2006. [55] P. N. Bartlett, P. Tebbutt, and R. G. Whitaker, 'Kinetic aspects of the use of modified electrodes and mediators in bioelectrochemistry,' Progress in reaction kinetics, vol. 16, pp. 55-155, 1991. [56] J. H. Pazur and K. Kleppe, 'The Oxidation of Glucose and Related Compounds by Glucose Oxidase from Aspergillus niger*,' Biochemistry, vol. 3, pp. 578-583, 1964/04/01 1964. [57] '' [58] '' [59] '' [60] A. Christenson, N. Dimcheva, E. E. Ferapontova, L. Gorton, T. Ruzgas, L. Stoica, et al., 'Direct Electron Transfer Between Ligninolytic Redox Enzymes and Electrodes,' Electroanalysis, vol. 16, pp. 1074-1092, 2004. [61] '' [62] R. Blakley, D. Henry, and C. Smith, 'Lack of correlation between cigarette mainstream smoke particulate phase radicals and hydroquinone yield,' Food and chemical toxicology, vol. 39, pp. 401-406, 2001. [63] J. Wang, J.-N. Park, X.-Y. Wei, and C. W. Lee, 'Room-temperature heterogeneous hydroxylation of phenol with hydrogen peroxide over Fe2+, Co2+ ion-exchanged Na[small beta] zeolite,' Chemical Communications, pp. 628-629, 2003. [64] R. Subramanyam and I. Mishra, 'Treatment of catechol bearing wastewater in an upflow anaerobic sludge blanket (UASB) reactor: Sludge characteristics,' Bioresource technology, vol. 99, pp. 8917-8925, 2008. [65] G. Zhao, M. Li, Z. Hu, H. Li, and T. Cao, 'Electrocatalytic redox of hydroquinone by two forms Of L-proline,' Journal of Molecular Catalysis A: Chemical, vol. 255, pp. 86-91, 2006. [66] C. Bourdillon, C. Hervagault, and D. Thomas, 'Increase in operational stability of immobilized glucose oxidase by the use of an artifical cosubstrate,' Biotechnology and bioengineering, vol. 27, pp. 1619-1622, 1985. [67] '' [68] I. Ivanov, T. Vidaković-Koch, and K. Sundmacher, 'Recent Advances in Enzymatic Fuel Cells: Experiments and Modeling,' Energies, vol. 3, pp. 803-846, 2010. [69] S. C. Wang, F. Yang, M. Silva, A. Zarow, Y. Wang, and Z. Iqbal, 'Membrane-less and mediator-free enzymatic biofuel cell using carbon nanotube/porous silicon electrodes,' Electrochemistry Communications, vol. 11, pp. 34-37, 2009. [70] H. Zhao, H. Zhou, J. Zhang, W. Zheng, and Y. Zheng, 'Carbon nanotube–hydroxyapatite nanocomposite: A novel platform for glucose/O< sub> 2</sub> biofuel cell,' Biosensors and Bioelectronics, vol. 25, pp. 463-468, 2009. [71] F. Tasca, L. Gorton, W. Harreither, D. Haltrich, R. Ludwig, and G. Nöll, 'Highly efficient and versatile anodes for biofuel cells based on cellobiose dehydrogenase from Myriococcum thermophilum,' The Journal of Physical Chemistry C, vol. 112, pp. 13668-13673, 2008. [72] F. Colmati, S. A. Yoshioka, V. Silva, H. Varela, and E. R. Gonzalez, 'Enzymatic based biocathode in a polymer electrolyte membrane fuel cell,' Int. J. Electrochem. Sci, vol. 2, pp. 195-202, 2007. [73] L. Deng, L. Shang, Y. Wang, T. Wang, H. Chen, and S. Dong, 'Multilayer structured carbon nanotubes/poly-l-lysine/laccase composite cathode for glucose/O< sub> 2</sub> biofuel cell,' Electrochemistry Communications, vol. 10, pp. 1012-1015, 2008. [74] Y. Kamitaka, S. Tsujimura, N. Setoyama, T. Kajino, and K. Kano, 'Fructose/dioxygen biofuel cell based on direct electron transfer-type bioelectrocatalysis,' Physical Chemistry Chemical Physics, vol. 9, pp. 1793-1801, 2007. [75] X. Li, H. Zhou, P. Yu, L. Su, T. Ohsaka, and L. Mao, 'A Miniature glucose/O< sub> 2</sub> biofuel cell with single-walled carbon nanotubes-modified carbon fiber microelectrodes as the substrate,' Electrochemistry Communications, vol. 10, pp. 851-854, 2008. [76] W. Zheng, H. Zhou, Y. Zheng, and N. Wang, 'A comparative study on electrochemistry of laccase at two kinds of carbon nanotubes and its application for biofuel cell,' Chemical Physics Letters, vol. 457, pp. 381-385, 2008. [77] M. Togo, A. Takamura, T. Asai, H. Kaji, and M. Nishizawa, 'Structural studies of enzyme-based microfluidic biofuel cells,' Journal of Power Sources, vol. 178, pp. 53-58, 2008. [78] Y. Liu and S. Dong, 'A biofuel cell harvesting energy from glucose–air and fruit juice–air,' Biosensors and Bioelectronics, vol. 23, pp. 593-597, 2007. [79] F. Gao, Y. Yan, L. Su, L. Wang, and L. Mao, 'An enzymatic glucose/O< sub> 2</sub> biofuel cell: Preparation, characterization and performance in serum,' Electrochemistry Communications, vol. 9, pp. 989-996, 2007. [80] X. Wu, F. Zhao, J. R. Varcoe, A. E. Thumser, C. Avignone-Rossa, and R. C. Slade, 'A one-compartment fructose/air biological fuel cell based on direct electron transfer,' Biosensors and Bioelectronics, vol. 25, pp. 326-331, 2009. [81] Y. Yan, L. Su, and L. Mao, 'Multi-walled carbon nanotube-based glucose/O2 biofuel cell with glucose oxidase and laccase as biocatalysts,' Journal of nanoscience and nanotechnology, vol. 7, pp. 4-5, 2007. [82] T. Chen, S. C. Barton, G. Binyamin, Z. Gao, Y. Zhang, H.-H. Kim, et al., 'A miniature biofuel cell,' Journal of the American Chemical Society, vol. 123, pp. 8630-8631, 2001. [83] N. Mano, F. Mao, W. Shin, T. Chen, and A. Heller, 'A miniature biofuel cell operating at 0.78 V,' Chem. Commun., pp. 518-519, 2003. [84] V. Soukharev, N. Mano, and A. Heller, 'A four-electron O2-electroreduction biocatalyst superior to platinum and a biofuel cell operating at 0.88 V,' Journal of the American Chemical Society, vol. 126, pp. 8368-8369, 2004. [85] H.-H. Kim, N. Mano, Y. Zhang, and A. Heller, 'A miniature membrane-less biofuel cell operating under physiological conditions at 0.5 V,' Journal of The Electrochemical Society, vol. 150, pp. A209-A213, 2003. [86] N. Mano and A. Heller, 'A miniature membraneless biofuel cell operating at 0.36 V under physiological conditions,' Journal of the Electrochemical Society, vol. 150, pp. A1136-A1138, 2003. [87] N. Mano, F. Mao, and A. Heller, 'A Miniature Membrane‐less Biofuel Cell Operating at+ 0.60 V under Physiological Conditions,' ChemBioChem, vol. 5, pp. 1703-1705, 2004. [88] F. Barriere, Y. Ferry, D. Rochefort, and D. Leech, 'Targetting redox polymers as mediators for laccase oxygen reduction in a membrane-less biofuel cell,' Electrochemistry Communications, vol. 6, pp. 237-241, 2004. [89] N. Mano, F. Mao, and A. Heller, 'A miniature biofuel cell operating in a physiological buffer,' Journal of the American Chemical Society, vol. 124, pp. 12962-12963, 2002. [90] Y. Tan, Q. Xie, J. Huang, W. Duan, M. Ma, and S. Yao, 'Study on glucose biofuel cells using an electrochemical noise device,' Electroanalysis, vol. 20, pp. 1599-1606, 2008. [91] L. Brunel, J. Denele, K. Servat, K. B. Kokoh, C. Jolivalt, C. Innocent, et al., 'Oxygen transport through laccase biocathodes for a membrane-less glucose/O< sub> 2</sub> biofuel cell,' Electrochemistry communications, vol. 9, pp. 331-336, 2007. [92] A. Habrioux, G. Merle, K. Servat, K. Kokoh, C. Innocent, M. Cretin, et al., 'Concentric glucose/O< sub> 2</sub> biofuel cell,' Journal of Electroanalytical Chemistry, vol. 622, pp. 97-102, 2008. [93] E. Nazaruk, S. Smoliński, M. Swatko-Ossor, G. Ginalska, J. Fiedurek, J. Rogalski, et al., 'Enzymatic biofuel cell based on electrodes modified with lipid liquid-crystalline cubic phases,' Journal of Power Sources, vol. 183, pp. 533-538, 2008. [94] J. Kim, S. I. Kim, and K.-H. Yoo, 'Polypyrrole nanowire-based enzymatic biofuel cells,' Biosensors and Bioelectronics, vol. 25, pp. 350-355, 2009. [95] S. Komaba, T. Mitsuhashi, and S. SHIRAISHI, 'Optimization of enzyme anode and cathode with polyion complex for the application to biofuel cells,' Electrochemistry, vol. 76, pp. 619-624, 2008. [96] E. Katz, I. Willner, and A. B. Kotlyar, 'A non-compartmentalized glucose∣ O< sub> 2</sub> biofuel cell by bioengineered electrode surfaces,' Journal of Electroanalytical Chemistry, vol. 479, pp. 64-68, 1999. [97] '' [98] M. C. Hersam, 'Progress towards monodisperse single-walled carbon nanotubes,' Nature Nanotechnology, vol. 3, pp. 387-394, 2008. [99] C. N. R. Rao, B. C. Satishkumar, A. Govindaraj, and M. Nath, 'Nanotubes,' ChemPhysChem, vol. 2, pp. 78-105, 2001. [100] J. W. Wilder, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, 'Electronic structure of atomically resolved carbon nanotubes,' Nature, vol. 391, pp. 59-62, 1998. [101] M. Terrones, W. Hsu, H. Kroto, and D. Walton, 'Nanotube: A Revolution in Materials Science,' Topics in Curent Chemistry, vol. 199, 1998. [102] J. Hone, M. Whitney, C. Piskoti, and A. Zettl, 'Thermal conductivity of single-walled carbon nanotubes,' Physical Review B, vol. 59, pp. R2514-R2516, 01/15/ 1999. [103] M. A. Osman and D. Srivastava, 'Temperature dependence of the thermal conductivity of single-wall carbon nanotubes,' Nanotechnology, vol. 12, p. 21, 2001. [104] M. Falvo, G. Clary, R. Taylor, V. Chi, F. Brooks, S. Washburn, et al., 'Bending and buckling of carbon nanotubes under large strain,' Nature, vol. 389, pp. 582-584, 1997. [105] M. Treacy, T. Ebbesen, and J. Gibson, 'Exceptionally high Young''s modulus observed for individual carbon nanotubes,' 1996. [106] E. W. Wong, P. E. Sheehan, and C. M. Lieber, 'Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes,' Science, vol. 277, pp. 1971-1975, September 26, 1997 1997. [107] A. D. K. Jones, T. Bekkedahl, and C. Kiang, 'Storage of hydrogen in single-walled carbon nanotubes,' Nature, vol. 386, p. 377, 1997. [108] M. R. Pederson and J. Q. Broughton, 'Nanocapillarity in fullerene tubules,' Physical Review Letters, vol. 69, p. 2689, 1992. [109] A. Hirsch, 'Functionalization of Single-Walled Carbon Nanotubes,' Angewandte Chemie International Edition, vol. 41, pp. 1853-1859, 2002. [110] A. Kuznetsova, D. B. Mawhinney, V. Naumenko, J. T. Yates Jr, J. Liu, and R. Smalley, 'Enhancement of adsorption inside of single-walled nanotubes: opening the entry ports,' Chemical Physics Letters, vol. 321, pp. 292-296, 2000. [111] A. Kuznetsova, I. Popova, J. T. Yates, M. J. Bronikowski, C. B. Huffman, J. Liu, et al., 'Oxygen-Containing Functional Groups on Single-Wall Carbon Nanotubes:  NEXAFS and Vibrational Spectroscopic Studies,' Journal of the American Chemical Society, vol. 123, pp. 10699-10704, 2001/10/01 2001. [112] J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, et al., 'Fullerene Pipes,' Science, vol. 280, pp. 1253-1256, May 22, 1998 1998. [113] E. T. Mickelson, I. W. Chiang, J. L. Zimmerman, P. J. Boul, J. Lozano, J. Liu, et al., 'Solvation of Fluorinated Single-Wall Carbon Nanotubes in Alcohol Solvents,' The Journal of Physical Chemistry B, vol. 103, pp. 4318-4322, 1999/05/01 1999. [114] P. Boul, J. Liu, E. Mickelson, C. Huffman, L. Ericson, I. Chiang, et al., 'Reversible sidewall functionalization of buckytubes,' Chemical Physics Letters, vol. 310, pp. 367-372, 1999. [115] M. J. O''Connell, P. Boul, L. M. Ericson, C. Huffman, Y. Wang, E. Haroz, et al., 'Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping,' Chemical Physics Letters, vol. 342, pp. 265-271, 2001. [116] J. Zhu, M. Yudasaka, M. Zhang, and S. Iijima, 'Dispersing Carbon Nanotubes in Water:  A Noncovalent and Nonorganic Way,' The Journal of Physical Chemistry B, vol. 108, pp. 11317-11320, 2004/08/01 2004. [117] Y.-C. Tsai, C.-C. Chiu, M.-C. Tsai, J.-Y. Wu, T.-F. Tseng, T.-M. Wu, et al., 'Dispersion of carbon nanotubes in low pH aqueous solutions by means of alumina-coated silica nanoparticles,' Carbon, vol. 45, pp. 2823-2827, 2007. [118] '' [119] J. Cabral and J. Kennedy, 'Covalent and coordination immobilization of proteins,' Bioprocess technology, vol. 14, p. 73, 1991. [120] J. Vidal, E. Garcıa, and J. Castillo, 'In situ preparation of overoxidized PPy/< i> o</i> PPD bilayer biosensors for the determination of glucose and cholesterol in serum,' Sensors and Actuators B: Chemical, vol. 57, pp. 219-226, 1999. [121] L. Doretti, D. Ferrara, P. Gattolin, and S. Lora, 'Amperometric biosensor with physically immobilized glucose oxidase on a PVA cryogel membrane,' Talanta, vol. 44, pp. 859-866, 1997. [122] Y.-C. Tsai, S.-C. Li, and J.-M. Chen, 'Cast Thin Film Biosensor Design Based on a Nafion Backbone, a Multiwalled Carbon Nanotube Conduit, and a Glucose Oxidase Function,' Langmuir, vol. 21, pp. 3653-3658, 2005/04/01 2005. [123] '' [124] Z. Liu, B. Liu, J. Kong, and J. Deng, 'Probing Trace Phenols Based on Mediator-Free Alumina Sol−Gel-Derived Tyrosinase Biosensor,' Analytical Chemistry, vol. 72, pp. 4707-4712, 2000/10/01 2000. [125] M.-C. Tsai and Y.-C. Tsai, 'Adsorption of glucose oxidase at platinum-multiwalled carbon nanotube-alumina-coated silica nanocomposite for amperometric glucose biosensor,' Sensors and Actuators B: Chemical, vol. 141, pp. 592-598, 2009. [126] Y.-C. Tsai, M.-C. Tsai, and C.-C. Chiu, 'Self-assembly of carbon nanotubes and alumina-coated silica nanoparticles on a glassy carbon electrode for electroanalysis,' Electrochemistry Communications, vol. 10, pp. 749-752, 2008. [127] P. T. Kissinger and W. R. Heineman, 'Cyclic voltammetry,' Journal of Chemical Education, vol. 60, p. 702, 1983. [128] M. E. Orazem and B. Tribollet, Electrochemical impedance spectroscopy vol. 48: John Wiley & Sons, 2011. [129] X. Chen, H. Ye, W. Wang, B. Qiu, Z. Lin, and G. Chen, 'Electrochemiluminescence Biosensor for Glucose Based on Graphene/Nafion/GOD Film Modified Glassy Carbon Electrode,' Electroanalysis, vol. 22, pp. 2347-2352, 2010. [130] X. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu, and Y. Lin, 'Glucose Oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing,' Biosensors and Bioelectronics, vol. 25, pp. 901-905, 12/15/ 2009. [131] B. Devadas, V. Mani, and S.-M. Chen, 'A Glucose/O 2 Biofuel Cell Based on Graphene and Multiwalled Carbon Nanotube Composite Modified Electrode,' International Journal of Electrochemical Science, vol. 7, 2012.
摘要: 本論文主要利用帶有正電荷之三氧化二鋁包覆二氧化矽(alumina-coated silica nanoparticles,ACS)分散多層壁奈米碳管(multi-walled carbon nanotube, MWCNT),將MWCNT-ACS奈米複合材料修飾以自組裝的方式吸附一小時修飾於玻璃碳電極(glassy carbon electrode )表面作為連接奈米薄膜與電極之間的橋樑,本實驗生物燃料電池系統分為陽極和陰極兩個部分,以陽極部分來看,將陽極媒介子(Madiator)對苯二酚(hydroquinone, HQ)所配製而成的水溶液製備成全氟磺酸聚合物(Nafion),再將陽極酵素-葡萄糖氧化酵素(glucose oxidase, GOD)修飾於經由MWCNT-ACS奈米複合薄膜與Nafion修飾之GCE上,成功製備出陽極電極Nafion/HQ/GOD/MWCNT-ACS/GCE,以陰極部分來看,先利用磷酸緩衝水溶液(Phosphate buffer solutions, PBS)所配製而成的全氟磺酸聚合物(Nafion),再將陰極酵素-漆氧化酵素(laccase)修飾於經由MWCNT-ACS奈米複合薄膜與Nafion修飾之GCE上,並且成功製備出陰極電極Nafion/laccase/MWCNT-ACS/GCE,由於陽極部分有添加陽極媒介子對苯二酚(hydroqunone, HQ)能有效提升電池發電效能以及發電功率。 以原子力顯微鏡下觀察MWCNT-ACS奈米複合材料薄膜修飾於GCE表面之情形,發現MWCNT扮演奈米導線之腳色,且提供了良好的電傳導性,利用FE-SEM觀察Nafion薄膜修飾在MWCNT-ACS複合薄膜前後之差異,以陽極部分來看,利用循環伏安法(CV)以Ag/AgCl為參考電極掃描速率在50mv/s情況下,發現有一對明顯可逆的氧化還原峰,顯現出其式電位(formal potential)約為0.1V,其值很接近對苯二酚(hydroquinone)的式電位0.08V,並發現在添加葡萄糖之後在0.2V電位下有明顯的氧化電流產生。利用不同掃描速率循環伏安法作圖可得知,隨著掃描速率不斷增加,峰電流值也不斷增加,而且陽極峰電流值及陰極峰電流值分別與掃描速率的一次方成正比的線性關係,因次可判定出Nafion/HQ/GOD所修飾在MWCNT-ACS複合薄膜之GCE所進行的電化學反應屬於表面控制。將製備好的陽極電極於不同PH值下之PBS做循環伏安法的掃瞄,發現在PH值6-8之間,其式電位與PH值具有線性關係,其斜率為-54mVpH-1,與可逆雙電子理論值-58.5mVpH-1相近。以陰極部分來看,將Nafion/laccase修飾於MWCNT-ACS複合薄膜之GCE上,利用循環伏安法在掃描速率50mv/s 磷酸緩衝溶液(PBS)下掃描,可藉由比較而觀察出在通入氧氣(O2)下有還原電流的產生,並可證明溶液中的氧氣(O2)能確實在陰極還原成水(H2O)。 在本實驗中,利用Nafion/HQ/GOD/MWCNT-ACS/GCE作為陽極、Nafin/laccase/MWCNT-ACS/GCE作為陰極在無隔膜(membraneless)下,溶液中葡萄糖濃度20mM且通入氧氣20分鐘的室溫系統下,可得到最佳操作電位0.16V時有15.3uW/cm2功率輸出。
This study described a multi-walled carbon nanotube-based glucose/oxygen biofuel cell with glucose oxidase and laccase as the anodic and cathodic biocatalysts, respectively. MWCNTs were directly dispersed into a highly charged ACS nanoparticle aqueous solution without functionalization of their surfaces. Glucose oxidase and laccase immobilized at multi-walled carbon nanotubes/Alumina-coated silica (MWCNT-ACS) nanocomposite modified glassy carbon electrode (GCE) are used as catalyst of anode and cathode of biofuel cell. Hydroquinone (HQ) was used as a anodic mediator to enhance the electron transfer at glassy carbon electrode surface. The prepared biocathode was very active toward the reduction of oxygen without using any cathodic mediators. The MWCNT-ACS modified glassy carbon electrode surface has been studied in detail using atomic force microscopy (AFM). The maximum power density of glucose/oxygen membraneless biofuel cell was 15.3μW/cm2 at 0.16V under physiological conditions, respectively. The results of this study indicate that Nafion/HQ/MWCNT-ACS and Nafion/laccase/MWCNT-ACS nanocomposites could be applied in development of biofuel cell and biosensor.
其他識別: U0005-0907201415360500
文章公開時間: 2017-07-11
Appears in Collections:化學工程學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.