Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91577
標題: 應用義大利白松露內生菌與灰白松露生產胞外多醣體和總三萜之研究與其代謝物之鑑定
Study on Exopolysaccharide and Triterpenoid Production from a Truffle Endophytic Fungus Hypocreales sp. NCHU01
作者: Chiung-Wen Yeh
葉瓊文
關鍵字: Tuber magnatum
Tuber borchii
endophytic fungus
polysaccharide
triterpenoids
sterol
義大利白松露
灰白松露
內生菌
多醣體
總三萜
類固醇
引用: 1. 周延鑫. 尋找松露的方法. 2008. 2. Mello, A., Murat, C., Bonfante, P., Truffles: much more than a prized and local fungal delicacy. FEMS Microbiology Letters, 2006. 260(1): p. 1-8. 3. Bradshaw, D., Vertebrate ecophysiology: an introduction to its principles and applications. Cambridge University Press, 2003. 4. Gao, J. M., Zhang, A. L., Wang, C. Y., Wang, X. H., Liu, J. K., A new ceramide from the ascomycete Tuber indium. Chinese Chemical Letters, 2002. 13(4): p. 325-326. 5. Hu, H. J., Li, P. Z., Lin, T., Hang, B. Q., Guo, Y. W., Effects of polysaccharide of Tuber sinica on tumor and immune system of mice. Journal of China Pharmaceutical University, 1994. 125(5): p. 289-292. 6. 葉瓊文, 應用義大利白松露Tuber magnatum生產多醣體最適化培養之探討. 2009. 中興大學. 化學工程學系 7. Huang, J. Y., Hu, W. C., Phylogenetic study of two truffles,Tuber formosanum and Tuber furfuraceum, identified from Taiwan. FEMS microbiology letters, 2009. 294(2): p. 157-171. 8. Agerer, R., Anatomical Characteristics of Identified Ectomycorrhizas: An Attempt Towards a Natural Classification, in Mycorrhiza, A. Varma and Hock, B., Editors. 1999, Springer Berlin Heidelberg. p. 633-682. 9. Meyer, F. H., Distribution of ectomycorrhizae in native and man made foresrs, G. C. Marks and Kojliwaki, T. T., Editors. 1973: Academic Press New York and London. p. 79-105. 10. 胡弘道, 林木菌根. 1990, 台北: 國立編譯館主編. 11. 胡弘道, 塊菇與林木共生關係之研究(I)菌根合成試驗. 台大實驗林研究, 1987. 1(1): p. 1-6. 12. 陳應龍, 黑孢塊菌的菌根合成及其超微結構研究. 中國食用菌, 2002. 21(5): p. 15-17. 13. Martinez-Amores, E., Valdes, M., Quintos, M., Seedling growth and ectomycorrhizal colonization of Pinus patula and P. radiata inoculated with spores of Helvella lacunosa, Russula brevipes or Lycoperdon perlatum. New Forests, 1990. 4(4): p. 237-245. 14. Danell, E., Fries, N., Methods for isolation of Cantharellus species, and the synthesis of ectomycorrhizae with Picea abies. Mycotaxon, 1990. 38: p. 141-148. 15. Mischiati, P., Fontana, A., In vitro culture of Tuber magnatum mycelium isolated from mycorrhizas. Mycological Research, 1993. 97(1): p. 40-44. 16. Zuccherelli, G., Zuccherelli, S., Capaccio, V., Productuon “in vitro”of two Hazelunt varieties and results about inoculum of Tuber magnatum Pico. on a mass scale. Acta Horticulture, 1994. 351(41): p. 371-380. 17. Bougher, N. L., Groves, T. S., Malajczuk, N., A practical guide for working with mycorrhizal fungi in forestry and agriculture. 1994, CSIRO.W.A.6014. Australia. 1-81. 18. Talou, T., Delmas, M., Gaset, A., Principal constituents of black truffle (Tuber melanosporum) aroma. Journal of Agricultural and Food Chemistry, 1987. 35(5): p. 774-777. 19. Talou, T., Delmas, M., Gaset, A., Analysis of headspace volatiles from entire black truffle (Tuber melanosporum). Journal of the Science of Food and Agriculture, 1989. 48(1): p. 57-62. 20. Pelusio, F., Nilsson, T., Montanarella, L., Tilio, R., Larsen, B., Facchetti, S., Madsen, J., Headspace Solid-Phase Microextraction Analysis of Volatile Organic Sulfur Compounds in Black and White Truffle Aroma. Journal of Agricultural and Food Chemistry, 1995. 43(8): p. 2138-2143. 21. Tirillini, B., Verdelli, G., Paolocci, F., Ciccioli, P., Frattoni, M., The volatile organic compounds from the mycelium of Tuber borchii Vitt. Phytochemistry, 2000. 55(8): p. 983-985. 22. Bellesia, F., Pinetti, A., Bianchi, A., Tirillini, B., Volatile Compounds of the White Truffle (Tuber magnatum Pico) from Middle Italy. Flavour and Fragrance Journal, 1996. 11(4): p. 239-243. 23. 水野卓, 川合正, eds. 菇類的化學. 生化學. 1997, 國立編譯館. 24. Mizuno, T., Bioactive biomolecules of mushroom:Food fruction and medicinal effect of mushroom fungi. Food Reviews International, 1995. 11(1): p. 7-21. 25. Bartnicki-Garcia, S., Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annual Review of Microbiology, 1968. 22: p. 87-108. 26. Cheung, P. C. K., Dietary Fiber Content and Composition of Some Cultivated Edible Mushroom Fruiting Bodies and Mycelia. Journal of Agricultural and Food Chemistry, 1996. 44(2): p. 468-471. 27. Kosuna, K., polysaccharide useful as biological response modulators and their preparation with Basidiomycetes, in European Patent. 1996. p. 733-740. 28. 黃雪芳, 劉柯俊, 管育慧, 董光世, 蘇慶華, 董大成, 口服靈芝菌絲培養液之抗癌人工轉移作用. 中華癌醫會誌, 1989. 1: p. 10-15. 29. 林俊清, 生藥的解說-靈芝的介紹. 藥學介紹, 1990. 6(3): p. 104-111. 30. Kojima, T., Tabata, K., Itoh, W., Yanaki, T., Molecular weight dependence of the antitumor activity of schizophyllan. Agricultural and biological chemistry, 1986. 50(1): p. 231-232. 31. Woodruff, H. B., Natural products from microorganisms. Science, 1980. 208(4449): p. 1225-1229. 32. 蕭明熙, 真菌代謝物之最新研究趨勢. 國科會生物科學研究中心專刊, 1985. 12: p. 168-183. 33. 王聲遠, 蕭明熙, 開發真菌次級代謝物為醫藥品. 中華真菌學會會刊, 2001. 16(1): p. 1-6. 34. 肖崇厚, 陳蘊如, 中藥化學. 1989, 上海: 科學技術出版社. 35. 李宛蓁, 樟芝菌絲體培養與生理活性成分生成之研究. 2003. 東海大學. 化學工程學系 36. Manitto, P., Biosynthesis of Natural products. 1981. 37. 王伯徹, 黃仁彰, 靈芝與樟芝之研發與市場面面觀. 食品工業, 2002. 34(5): p. 3-17. 38. 黃惠君, 食用藥菇的營養與藥用價值. 食品工業, 2004. 36(5): p. 25-32. 39. 顏國欽, 樟芝菌絲體液體培養萃取物抗氧化及抗腫瘤特性之探討. 保健食品研究開發計畫成果發表會, 2003: p. 5-13. 40. Ikeda, Y., Murakami, A., Ohigashi, H., Ursolic acid: An anti- and pro-inflammatory triterpenoid. Molecular Nutrition & Food Research, 2008. 52(1): p. 26-42. 41. Huang, Y., Li, J., Wang, R., Wu, Q., Li, Y. H., Yu, S. C., Cheng, W. M., Wang, Y. Y., Effect of triterpene acids of Eriobotrya japonica (Thunb.) Lindl. leaf on inflammatory cytokine and mediator induction from alveolar macrophages of chronic bronchitic rats. Inflammation Research, 2007. 56(2): p. 76-82. 42. Nangia-Makker, P., Tait, L., Shekhar, M. P. V., Palomino, E., Hogan, V., Piechocki, M. P., Funasaka, T., Raz, A., Inhibition of breast tumor growth and angiogenesis by a medicinal herb: Ocimum gratissimum. International Journal of Cancer, 2007. 121(4): p. 884-894. 43. Yang, L., Wu, S., Zhang, Q., Liu, F., Wu, P., 23,24-Dihydrocucurbitacin B induces G2/M cell-cycle arrest and mitochondria-dependent apoptosis in human breast cancer cells (Bcap37). Cancer Letters, 2007. 256(2): p. 267-278. 44. Box, G. E. P., Wilson, K. B., On the Experimental Attainment of Optimum Conditions. Journal of the Royal Statistical Society. Series B (Methodological), 1951. 13(1): p. 1-45. 45. 沈明來, 試驗設計學. 1999, 台北: 九州圖書文物有限公司. 46. 黎中正, 實驗設計與分析. 1998, 高雄: 高雄圖書有限公司. 47. 洪哲潁, 陳國誠, 回應曲面實驗設計法在微生物酵素生產上之應用. 化工資訊, 1992. 39(2): p. 3-18. 48. 黃家樑, 液態培養生產靈芝菌絲體與靈芝多醣之研究. 1997. 東海大學. 化學工程研究所 49. 姚?, 高興喜, 宫志遠, 孔明, 任鵬飛, 不同脂肪酸對靈芝液體醱酵的影響. 食用菌學報, 2010. 17(3): p. 55-59. 50. Liu, C. J., Chiang, C. C., Chiang, B. H., The elicited two-stage submerged cultivation of Antrodia cinnamomea for enhancing triterpenoids production and antitumor activity. Biochemical Engineering Journal, 2012. 64: p. 48-54. 51. Zhao, J., Davis, L. C., Verpoorte, R., Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances, 2005. 23(4): p. 283-333. 52. Ravi Kumar, M. N. V., A review of chitin and chitosan applications. Reactive and Functional Polymers, 2000. 46(1): p. 1-27. 53. Chevalier, G. The truffle cultivation in France:assessment of the situation after 25 years of intensive use of mycorrhizal seedlings. Ecology,Physiology and cultivation of Edible Mycorrhizal Mushrooms. 1998. 54. Rubini, A., Paolocci, F., Granetti, B., Acrioni, S., Morphological characterization of molecular-typed Tuber magnatum ectomycorrhizae. Mycorrhiza, 2001. 11(4): p. 179-185. 55. 樂超銀, 邵偉, 劉慶剛, 郭慶華, 猴頭菌液體發酵條件的研究. 中國食用菌, 1998. 18(3): p. 32-35. 56. Wilson, R., Turner, A. P. F., Glucose oxidase: an ideal enzyme. Biosensors and Bioelectronics, 1992. 7(3): p. 165-185. 57. DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., Smith, F., Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 1956. 28(3): p. 350-356. 58. 黃麗娜, 食用菇菌絲體深層培養在食品工業上的用途. 食品工業, 1996. 28(9): p. 20-26. 59. Tang, Y. J., Zhu, L. L., Li, D. S., Mi, Z. Y., Li, H. M., Significance of inoculation density and carbon source on the mycelial growth and Tuber polysaccharides production by submerged fermentation of Chinese truffle Tuber sinense. Process Biochemistry, 2008. 43(5): p. 576-586. 60. Lee, I. H., Chen, C. T., Chen, H. C., Hsu, W. C., Sugar flux in response to carbohydrate-feeding of cultured Antrodia camphorata, a recently described medicinal fungus in Taiwan. Chinese Medical Journal, 2002. 13(1): p. 21-23. 61. Jonathan, S. G., Fasidi, I. O., Studies on phytohormones, vitamins and mineral element requirements of Lentinus subnudus (Berk) and schizophyllum commune (Fr. Ex. Fr) from Nigeria. Food Chemistry, 2001. 75(3): p. 303-307. 62. Patel, G. B., Agnew, B. J., Growth and butyric acid production by Clostridium populeti. Archives of Microbiology, 1988. 150(3): p. 267-271. 63. Fang, Q. H., Zhong, J. J., Effect of initial pH on production of ganoderic acid and polysaccharide by submerged fermentation of Ganoderma lucidum. Process Biochemistry, 2002. 37: p. 769-774. 64. 徐錦堂, 中國藥用真菌學. 1997, 北京醫科大學中國協和醫科大學聯合出版社. 65. 陶雪娟, 徐崇敬, 宋鳳菊, 張建敏, 陳建華, 蕈菌液體生物醱酵技術的研究現狀與進展. 上海農學院學報, 1999. 17(2): p. 141-147. 66. Cho, Y. J., Cho, J. P., Park, H. J., Hwang, S. W., Kim, J. W., Choi, J. W., Yun, Production of red pigment by submerged culture of Paecilomyces sinclairii. Letters in applied microbiology, 2002. 35(3): p. 195-202. 67. Kim, H. O., Lim, J. H., Joo, S. W., Hwang, J. W., Choi, J. W., Yun, Optimization of submerged culture condition for the production of mycelial biomass and exopolysaccharides by Agrocybe cylindracea. Bioresource technology, 2005. 96(10): p. 1175-1182. 68. Pacioni, G., Leonardi, M., Aimola, P., Ragnelli, A. M., Rubini, A., Paolocci, F., Isolation and characterization of some mycelia inhabiting Tuber ascomata. Mycological Research, 2007. 111(12): p. 1450-1460. 69. Kawagishi, H., Katsumi, R., Sazawa, T., Mizuno, T., Hagiwara, T., Nakamura, T., Cytotoxic steroids from the mushroom Agaricus blazei. Phytochemistry, 1988. 27(9): p. 2777-2779. 70. Mizuno, M., Morimoto, M., Minato, K. i., Tsuchida, H., Polysaccharides from Agaricus blazei Stimulate Lymphocyte T-Cell Subsets in Mice. Bioscience, Biotechnology, and Biochemistry, 1998. 62(3): p. 434-437. 71. Gurfinkel, D. M., Rao, A. V., Determination of Saponins in Legumes by Direct Densitometry. Journal of Agricultural and Food Chemistry, 2002. 50(3): p. 426-430. 72. Claus, R., Hoppen, H. O., Karg, H., The secret of truffles: A steroidal pheromone. Experientia, 1981. 37(11): p. 1178-1179. 73. Katov, T., Gower, D. B., The biosynthesis of 5α-androst-16-en-3-one from progesterone by boar testis homogenate. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 1968. 164(1): p. 134-136. 74. Gower, D. B., Thomas, B. S., Gas-liquid chromatography of androst-16-enes as trimethylsilyl and chloromethyldimethylsilyl ethers. Journal of Chromatography A, 1968. 36(3): p. 338-340. 75. Benton, D., Wastell, V., Effects of androstenol on human sexual arousal. Biological Psychology, 1986. 22(2): p. 141-147. 76. Schisler, L. C., Volkoff, O., The Effect of Safflower Oil on Mycelial Growth of Boletaceae in Submerged Liquid Cultures. Mycologia, 1977. 69(1): p. 118-125. 77. 羅潔, 劉玉環, 羅愛香, 烏桕油脂對香菇菌絲生長的影響. 食品科學, 2007. 28(9): p. 422-424. 78. 羅潔, 劉玉環, 不同脂肪酸對平菇菌絲生長的影響. 食品科學, 2008. 29(8): p. 453-455. 79. Fukushima, Y., Itoh, H., Fukase, T., Motai, H., Stimulation of protease production byAspergillus oryzae with oils in continuous culture. Applied Microbiology and Biotechnology, 1991. 34(5): p. 586-590. 80. Stasinopoulos, S. J., Seviour, R. J., Stimulation of exopolysaccharide production in the fungus Acremonium persicinum with fatty acids. Biotechnology and Bioengineering, 1990. 36(8): p. 778-782. 81. Yang, F. C., Ke, Y. F., Kuo, S. S., Effect of fatty acids on the mycelial growth and polysaccharide formation by Ganoderma lucidum in shake flask cultures. Enzyme and Microbial Technology, 2000. 27(3–5): p. 295-301. 82. 林庚申, 張小青, 魏鐵錚, 郭良棟, 樺褐孔菌三萜類物質的提取與含量測定. 菌物學報, 2007. 26(3): p. 396-403. 83. 姚松君, 黄生權, 陳壯耀, 曾慶孝, 超音波輔助提取靈芝三萜的工藝研究. Modern Food Science and Technology, 2009. 25(10): p. 1220-1223. 84. Saltarelli, R., Ceccaroli, P., Polidori, E., Citterio, B., Vallorani, L., Stocchi, V., A high concentration of glucose inhibits Tuber borchii mycelium growth: a biochemical investigation. Mycological Research, 2003. 107(1): p. 72-76. 85. Fang, Q. H., Zhong, J. J., Effect of initial pH on production of ganoderic acid and polysaccharide by submerged fermentation of Ganoderma lucidum. Process Biochemistry, 2002. 37(7): p. 769-774. 86. 胡宗策, 鄭曉冬, Termitomyces albuminosus 液體深層發酵的研究. 菌物系統, 2002. 21(1): p. 98-101. 87. Fang, Q. H., Zhong, J. J., Submerged fermentation of higher fungus Ganoderma lucidum for production of valuable bioactive metabolites-ganoderic acid and polysaccharide. Biochemical Engineering Journal, 2002. 10(1): p. 61-65. 88. Seviour, R. J., Kristiansen, B., Effect of ammonium ion concentration on polysaccharide production by Aureobasidium pullulans in batch culture. European journal of applied microbiology and biotechnology, 1983. 17(3): p. 178-181. 89. Reese, E. T., Maguire, A., Surfactants as Stimulants of Enzyme Production by Microorganisms. Applied Microbiology, 1969. 17(2): p. 242-245. 90. 姚?, 高興喜, 宫志遠, 孔明, 任鵬飛, 不同脂肪酸對桑黄液體醱酵的影響. 食品科學, 2011. 32(7): p. 198-201. 91. 洪嘉男, 應用液態培養Ganodermalucidum生產Polysaccharide-油脂及界面活性劑添加效應之探討. 2006. 中興大學. 化學工程學系 92. Eilert, U., Constabel, F., Kurz, W. G. W., Elicitor-stimulation of Monoterpene Indole Alkaloid Formation in Suspension Cultures of Catharanthus roseus. Journal of Plant Physiology, 1986. 126(1): p. 11-22. 93. Prakash, G., Srivastava, A. K., Statistical elicitor optimization studies for the enhancement of azadirachtin production in bioreactor Azadirachta indica cell cultivation. Biochemical Engineering Journal, 2008. 40(2): p. 218-226. 94. Wang, G., Li, Y. Y., Li, D. S., Tang, Y. J., Determination of 5α-androst-16-en-3α-ol in truffle fermentation broth by solid-phase extraction coupled with gas chromatography–flame ionization detector/electron impact mass spectrometry. Journal of Chromatography B, 2008. 870(2): p. 209-215. 95. Tang, Y., Li, H. M., Tang, Y. J., Comparison of sterol composition between Tuber fermentation mycelia and natural fruiting bodies. Food Chemistry, 2012. 132(3): p. 1207-1213. 96. Zheng, W. F., Liu, T., Xianf, X. Y., Gu, Q., Sterol composition in field-grown and cultured mycelia of Inonotus obliquus. Acta Pharmaceutica Sinica, 2007. 42(7): p. 750. 97. Bougher, N. L., Grove, T. S., Malajczuk, N., Growth and phosphorus acquisition of karri (Eucalyptus diversicolor F. Muell.) seedlings inoculated with ectomycorrhizal fungi in relation to phosphorus supply. New Phytologist, 1990. 114(1): p. 77-85. 98. 許碧如, 溫度、pH 值及葡萄糖濃度對夏塊菇菌生長之效應. 1987. 台灣大學. 森林環境暨資源學系 99. 邵佐謙, 溫度及pH 值對黑孢塊菌生長之效應及菌根合成試驗. 1992. 台灣大學. 森林環境暨資源學
摘要: 近年來,廣泛地利用液態發酵培養食用菇類生產菌體和其代謝產物,已經成為食用菇類的一種趨勢。而食用菇類最吸引人的地方,在於它的代謝產物能夠抗腫瘤活性、保肝作用等多種醫療作用。 本論文主要包含三個部分,第一部分是以義大利白松露內生菌(Hypocreales sp. NCHU01)開發液態醱酵生產菌絲體和多醣體,利用回應曲面設計法,尋找最適化培養基生產多醣體,碳源、氮源、溫度、pH、鎂離子及鉀離子為設計因子,利用回應曲面設計法來找出最佳的培養基組成,結果顯示以蔗糖 10.60 g/L、yeast extract 10.92 g/L、MgSO4 1.0 g/L、KH2PO4 1.01 g/L,培養基最適初始pH和醱酵溫度,分別為6.5和25.0℃在恆溫震盪箱以100 rpm的操作條件下,可得到最佳的胞外多醣體 1329.25 mg/L,胞外多醣體為未最佳化前的3.34倍 第二部分研究以義大利白松露內生菌開發液態醱酵生產總三萜,研究結果,在碳源測試實驗中,當以sucrose濃度為10 g/L時,可得到較高的總三萜量132.26±1.77 mg/L;在氮源測試實驗中,當以yeast extract 濃度為15 g/L時,可得到較高的總三萜量157.68±14.33 mg/L。為了提升總三萜產量,添加不同的濃度的亞麻油酸、棕櫚酸、硬脂酸、幾丁聚醣、氯化鈣和樟木萃取液,結果顯示,當以2 g/L亞麻油酸和125 mg/L幾丁聚醣產總三萜量為最多,分別為327.49±42.15 mg/L及343.16±9.25 mg/L。最後以松露子實體與內生菌菌絲體進行氣相層析質譜儀的分析,發現內生菌菌絲體的類固醇成分相似於松露子實體。其中有兩種類固醇 (barrigenol R1、dehydroepiandrosterone)是第一次在松露中被發現。 第三部分研究以灰白松露(Tuber borchii)液態醱酵生產總三萜,研究結果,在不同碳氮源測試實驗中,以葡萄糖和malt extract為最佳碳氮源,當以葡萄糖濃度為20 g/L時,可得到較高的總三萜量71.17±3.05 mg/L,當以malt extract 濃度為20 g/L時,可得到較高的總三萜量123.27±4.22 mg/L。為了提升總三萜產量,另外添加不同油脂於培養基中,結果顯示以添加2 %的花生油有最佳的產量,其總三萜量為191.09±5.34 mg/L,為控制組(123.27±4.22 mg/L)之總三萜量的1.55倍。
The submerged fermentation process for the cultivation of mushroom mycelia and its secondary metabolites has been widely used for the production of pharmaceutical mushrooms. The mushroom’s metabolites could provide antitumor, hepatoprotective and pharmacological effects in the medical applications. In the first part of this study, exopolysaccharides (EPS) produced from Hypocreales sp. NCHU01 was carried out in the submerged cultivation. To find the optimal conditions, factors such as carbon and nitrogen source concentrations, pH, temperature, magnesium ion, and potassium ion levels were considered. The results showed that the optimal conditions were as follows: sucrose, yeast extract, magnesium sulfate and potassium dihydrogen phosphate were 10.6, 10.92, 1.0 and 1.01 g/L, respectively. The optimization conditions were set at 25 C with an initial pH 6.5. The maximum EPS production was about 1329 ± 23 mg/L, which was 3.34-fold to that of the original condition. The study displayed an increasing molecular weight distribution in the harvested EPS over a longer cultivation time. The quantitative relationship between mycelial biomass and EPS production was also built. In the second part, biomass and triterpenoids of the truffle endophytic fungus Hypocreales sp. NCHU01 were produced in the submerged culture. In the carbon source test, 10 g/L of sucrose yielded the highest triterpenoid production, reaching 132.26±1.77 mg/L. In the nitrogen source test, 15 g/L of yeast extract was identified as the most favorable source for crude triterpenoid production, reaching 157.68 mg/L. In the stimulatory test, the addition of 2 g/L linoleic acid or 125 mg/L chitosan to the medium was found to elevate triterpenoid production to 327.5 mg/L and 343.2 mg/L, respectively. The major sterol compositions of the fruiting body of Tuber magnatum and mycelia of Hypocreales sp. NCHU01 were identified by gas chromatography with a mass spectrometer. It was found that sterol composition in the fermentation mycelia of Hypocreales sp. NCHU01 was quite similar to that of the fruiting bodies of Tuber melanosporum, Tuber magnatum and Tuber sinense. Two kinds of sterols (i.e. barrigenol R1; and dehydroepiandrosterone) were identified for the first time from Tuber species. Finally, triterpenoids produced from Tuber borchii was carried out in the submerged cultivation. In the carbon source test, 20 g/L of glucose yielded the highest triterpenoid production (71.17±3.05 mg/L). In the nitrogen source test, 20 g/L of malt extract was identified as the most favorable source for crude triterpenoid production (123.27±4.22 mg/L). In the stimulatory effect, the addition of 2 % peanut oil to the medium was found to elevate triterpenoid production to 191.09±5.34 mg/L, which was 1.55-fold to that of the original condition.
URI: http://hdl.handle.net/11455/91577
其他識別: U0005-1308201516261700
文章公開時間: 2018-08-20
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.