Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91579
標題: 探討攜伴蛋白提升Candida antarctica lipase A使用性並應用於表面表現系統之研究
Enhanced expression of Candida antarctica lipase A by chaperones on Escherichia coli surface display system
作者: Shih-Che Lin
林世哲
關鍵字: Candida antarctica lipase A
surface display system
chaperone
ppiA
南極假絲酵母脂肪酶A
表面表現系統
攜伴蛋白
肽脯胺醯異構酶A
引用: 1. Goeddel, D.V., Kleid, D.G., Bolivar, F., Heyneker, H.L., Yansura, D.G., Crea, R., Hirose, T., Kraszewski, A., Itakura, K., and Riggs, A.D., Expression in Escherichia coli of chemically synthesized genes for human insulin. Proceedings of the National Academy of Sciences of the United States of America, 1979. 76(1): p. 106-110. 2. Barnum, S.R., Biotechnology: an introduction. 1998: Wadsworth Publishing Company. 3. Mateo, C., Fernandez-Lorente, G., Pessela, B.C.C., Vian, A., Carrascosa, A.V., Garcia, J.L., Fernandez-Lafuente, R., and Guisan, J.M., Affinity chromatography of polyhistidine tagged enzymes:: New dextran-coated immobilized metal ion affinity chromatography matrices for prevention of undesired multipoint adsorptions. Journal of Chromatography A, 2001. 915: p. 97-106. 4. Sakhamuru, K., Hough, D.W., and Chaudhuri, J.B., Protein Purification by Ultrafiltration Using a beta-Galactosidase Fusion Tag. Biotechnology progress, 2000. 16: p. 296-298. 5. Smith, D.B. and Johnson, K.S., Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene, 1988. 67: p. 31-40. 6. Terpe, K., Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Applied Microbiology and Biotechnology, 2003. 60: p. 523-533. 7. Titchener-Hooker, N.J., Gritsis, D., Mannweiler, K., Olbrich, R., Gardiner, S., Fish, N.M., and Hoare, M., Integrated process design for producing and recovering proteins from inclusion bodies. Biopharm International 1991. 4: p. 34-38. 8. Fischer, B., Sumner, I., and Goodenough, P., Isolation, renaturation, and formation of disulfide bonds of eukaryotic proteins expressed in Escherichia coli as inclusion bodies. Biotechnology and Bioengineering, 1993. 41: p. 3-13. 9. Thapa, A., Shahnawaz, M., Karki, P., Dahal, G.R., Sharoar, M.G., Shin, S.Y., Lee, J.S., Cho, B., and Park, I.S., Purification of inclusion body-forming peptides and proteins in soluble form by fusion to Escherichia coli thermostable proteins. BioTechniques, 2008. 44: p. 787-798. 10. Akbari, N., Khajeh, K., Ghaemi, N., and Salemi, Z., Efficient refolding of recombinant lipase from Escherichia coli inclusion bodies by response surface methodology. Protein Expression and Purification, 2010. 70(2): p. 254-259. 11. Carriere, F., Thirstrup, K., Hjorth, S., and Boel, E., Cloning of the classical guinea pig pancreatic lipase and comparison with the lipase related protein2. FEBS Letters, 1994. 338: p. 63-68. 12. Uppenberg, J., Parkar, S., Bergfors, T., and Jones, T.A., Crystallization and preliminary X-ray studies of lipase B from Candida antarctica. Journal of Molecular Biology, 1994. 235: p. 790-792. 13. Uppenberg, J., Ohrner, M., Norin, M., Hult, K., Kleywegt, G.J., Parkar, S., Waagem, V., Anthonsen, T., and Jones, T.A., Crystallographic and molecular-modeling studies of lipase B from Candida antarctica reveal a stereospecificity pocket of secondary alcohols. Biochemistry, 1995. 34: p. 16838-16851. 14. Brzozowski, A.M., Derewenda, U., Derewenda, Z.S., Dodson, G.G., Lawson, D.M., Turkenburg, J.P., Bjorkling, F., Huge-Jensen, B., Patkar, S.A., and Thim, L., A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature 1991. 351: p. 491-494. 15. Hasan, F., Shah, A.A., and Hameed, A., Industrial applications of microbial lipases. Enzyme and Microbial Technology, 2006. 39(2): p. 235-251. 16. Xu, H., Lan, D., Yang, B., and Wang, Y., Biochemical properties and structure analysis of a DAG-Like lipase from Malassezia globosa. International Journal of Molecular Sciences, 2015. 16(3): p. 4865-4879. 17. Linko, Y.Y., Lamsa, M., Wu, X., Uosukainen, E., Seppala, J., and Linko, P., Biodegradable products by lipase biocatalysis. Journal of Biotechnology, 1998. 66(1): p. 41-50. 18. Maugard, T., Rejasse, B., and Legoy, M.D., Synthesis of water-soluble retinol derivatives by enzymatic method. Biotechnology Progress, 2002. 18: p. 424-428. 19. Nishioka, M., Joko, K., and Takama, M., Lipase manufacture with Candida for use in detergents. 1990: Japanese Patent. 20. Sen, K. and Rodgers, M., Distribution of six virulence factors in Aeromonas species isolated from US drinking water utilities: a PCR identification. Journal of Applied Microbiology, 2004. 97: p. 1077-1086. 21. Dharmsthiti, S. and Kuhasuntisuk, B., Lipase from Pseudomonas aeruginosa LP602: biochemical properties and application for wastewater treatment. Journal of Industrial Microbiology & Biotechnology, 1998. 21: p. 75-80. 22. Rajmohan, S., Dodd, C.E., and Waites, W.M., Enzymes from isolates of Pseudomonas fluorescens involved in food spoilage. Journal of Applied Microbiology, 2002. 93: p. 205-213. 23. Larios, A., Garcia, H.S., Oliart, R.M., and Valerio-Alfaro, G., Synthesis of flavor and fragrance esters using Candida antarctica lipase. Applied Microbiology and Biotechnology, 2004. 65: p. 373-376. 24. Latha, K. and Ramarethinam, S., Studies on lipid acyl hydrolases during tea processing. Plant Physiology, 1999. 3: p. 73-78. 25. Kurashige, J., Matsuzaki, N., and Takahashi, H., Enzymatic modification of canola palm oil mixtures-effects on the fluidity of the mixture. Journal of the American Oil Chemists'' Society, 1993. 70: p. 849-852. 26. Freedman, B., Pryde, E.H., and Mounts, T.L., Variables Affecting the Yields of Fatty Esters from Transesterified Vegetable-Oils. Journal of the American Oil Chemists Society, 1984. 61(10): p. 1638-1643. 27. Zhang, H.Y., Wang, X., Ching, C.B., and Wu, J.C., Experimental optimization of enzymic kinetic resolution of racemic flurbiprofen. Applied Biochemistry and Biotechnology, 2005. 42: p. 67-71. 28. Ville, E., Carriere, F., Renou, C., and Laugier, R., Physiological study of pH stability and sensitivity to pepsin of human gastric lipase. Digestion, 2002. 65: p. 73-81. 29. Kaieda, M., Samukawa, T., Kondo, A., and Fukuda, H., Effect of methanol and water contents on production of biodiesel fuel from plant oil catalyzed by various lipases in a solvent-free system. Journal of Bioscience and Bioengineering, 2001. 91(1): p. 12-15. 30. Kynclova, E., Hartig, A., and Schalkhammer, T., Oligonucleotide labelled lipase as a new sensitive hybridization probe and its use in bio-assays and biosensors. Journal of Molecular Recognition, 1995. 8(1-2): p. 139-145. 31. Bajpai, P., Application of enzymes in the pulp and paper industry. Biotechnology Progress, 1999. 15: p. 147-157. 32. Kirk, O. and Christensen, M.W., Lipases from Candida antarctica: Unique biocatalysts from a unique origin. Organic Process Research & Development, 2002. 6: p. 446-451. 33. Blank, K., Morfill, J., Gumpp, H., and Gaub, H.E., Functional expression of Candida antarctica lipase B in Eschericha coli. Journal of Biotechnology, 2006. 125(4): p. 474-483. 34. Larsen, M.W., Bornscheuer, U.T., and Hult, K., Expression of Candida antarctica lipase B in Pichia pastoris and various Escherichia coli systems. Protein Expression and Purification, 2008. 62(1): p. 90-97. 35. Ognjanovic, N., Bezbradica, D., and Knezevic-Jugovic, Z., Enzymatic conversion of sunflower oil to biodiesel in a solvent-free system: Process optimization and the immobilized system stability. Bioresource Technology, 2009. 100(21): p. 5146-5154. 36. Widmann, M., Juhl, P.B., and Pleiss, J., Structural classification by the Lipase Engineering Database: a case study of Candida antarctica lipase A. BMC Genomics, 2010. 11: p. 123-131. 37. Domínguez de María, P., Carboni-Oerlemans, C., Tuin, B., Bargeman, G., van der Meer, A., and van Gemert, R., Biotechnological applications of Candida antarctica lipase A: State-of-the-art. Journal of Molecular Catalysis B: Enzymatic, 2005. 37: p. 36-46. 38. Hoegh, I., Patkar, S., Halkier, T., and Hansen, M.T., 2 Lipases from Candida-Antarctica - Cloning and Expression in Aspergillus-Oryzae. Canadian Journal of Botany-Revue Canadienne De Botanique, 1995. 73: p. S869-S875. 39. Pfeffer, J., Richter, S., Nieveler, J., Hansen, C.E., Rhlid, R.B., Schmid, R.D., and Rusnak, M., High yield expression of lipase A from Candida antarctica in the methylotrophic yeast Pichia pastoris and its purification and characterisation. Applied Microbiology and Biotechnology, 2006. 72(5): p. 931-938. 40. Pfeffer, J., Rusnak, M., Hansen, C.-E., Rhlid, R.B., Schmid, R.D., and Maurer, S.C., Functional expression of lipase A from Candida antarctica in Escherichia coli—A prerequisite for high-throughput screening and directed evolution. Journal of Molecular Catalysis B: Enzymatic, 2007. 45(1-2): p. 62-67. 41. Smith, G.P., Filamentous Fusion Phage - Novel Expression Vectors That Display Cloned Antigens on the Virion Surface. Science, 1985. 228(4705): p. 1315-1317. 42. Tagg, J.R., Dajani, A.S., and Wannamaker, L.W., Bacteriocins of gram-positive bacteria. Bacteriological Reviews, 1976. 40(3): p. 722-756. 43. Lee, S.Y., Choi, J.H., and Xu, Z., Microbial cell-surface display. Trends in Biotechnology, 2003. 21: p. 45-52. 44. Wernerus, H. and Stahl, S., Biotechnological applications for surface engineered bacteria. Biotechnology and Applied Biochemistry, 2004. 40: p. 209-228. 45. Margaritis, A. and Bassi, A.S., Principles and biotechnological applications of bacterial ice nucleation. Critical Reviews in Biotechnology, 1991. 11: p. 277-295. 46. Edwards, A.R., Van Den Bussche, R.A., Wichman, H.A., and Orser, C.S., Unusual pattern of bacterial ice nucleation gene evolution. Molecular Biology and Evolution, 1994. 11: p. 911-920. 47. Samuelson, P., Gunneriusson, E., Nygren, P.A., and Stahl, S., Display of proteins on bacteria. Journal of Biotechnology, 2002. 96: p. 129-154. 48. van Bloois, E., Winter, R.T., Kolmar, H., and Fraaije, M.W., Decorating microbes: surface display of proteins on Escherichia coli. Trends in Biotechnology, 2011. 29(2): p. 79-86. 49. Li, Q., Yu, Z., Shao, X., He, J., and Li, L., Improved phosphate biosorption by bacterial surface display of phosphate binding protein utilizing ice nucleation protein. FEMS Microbiology Letters, 2009. 299: p. 44-52. 50. Shimazu, M., Mulchandani, A., and Chen, W., Cell surface display of organophosphorus hydrolase using ice nucleation protein. Biotechnology progress, 2001. 17: p. 76-80. 51. Wu, P.H., Giridhar, R., and Wu, W.T., Surface display of transglucosidase on Escherichia coli by using the ice nucleation protein of Xanthomonas campestris and its application in glucosylation of hydroquinone. Biotechnology and Bioengineering, 2006. 95: p. 1138-1147. 52. Chrunyk, B.A., Evans, J., Lillquist, J., Young, P., and Wetzel, R., Inclusion body formation and protein stability in sequence variants of interleukin-1 beta. Journal of Biological Chemistry, 1993. 268: p. 18053-18061. 53. Ow, D.S., Lim, D.Y., Nissom, P.M., Camattari, A., and Wong, V.V., Co-expression of Skp and FkpA chaperones improves cell viability and alters the global expression of stress response genes during scFvD1.3 production. Microbial Cell Factories, 2010. 9: p. 22. 54. Hayhurst, A. and Harris, W.J., Escherichia coli Skp Chaperone Coexpression Improves Solubility and Phage Display of Single-Chain Antibody Fragments. Protein Expression and Purification, 1999. 15(3): p. 336-343. 55. Narayanan, N. and Chou, C.P., Periplasmic chaperone FkpA reduces extracytoplasmic stress response and improves cell-surface display on Escherichia coli. Enzyme and Microbial Technology, 2008. 42(6): p. 506-513. 56. Colgan, J., Asmal, M., and Luban, J., Isolation, Characterization and Targeted Disruption of Mouse Ppia: Cyclophilin A Is Not Essential for Mammalian Cell Viability Genomics, 2000. 68(2): p. 167-178. 57. Hanahan, D., Studies on transformation of E.coli with plasmids. Journal of Molecular Biology, 1983. 166: p. 557-580. 58. Jung, H.C., Ko, S., Ju, S.J., Kim, E.J., Kim, M.K., and Pan, J.G., Bacterial cell surface display of lipase and its randomly mutated library facilitates high-throughput screening of mutants showing higher specific activities. Journal of Molecular Catalysis B: Enzymatic, 2003. 26(3-6): p. 177-184. 59. Chiou, S.H. and Wu, W.T., Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups. Biomaterials, 2004. 25(2): p. 197-204. 60. Rath, A., Glibowicka, M., Nadeau, V.G., Chen, G., and Deber, C.M., Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. Proceedings of the National Academy of Sciences 2009. 106(6): p. 1760-1765. 61. Sambrook, J. and Russel, D.W., Molecular Cloning: A Laboratory Mannul. 2001: Cold Spring Habor Laboratory Publishers, New York. 62. Kosinski, M.J., Rinas, U., and Bailey, J.E., Isopropyl-β-D-thiogalactopyranoside influences the metabolism of Escherichia coli. Applied Microbiology and Biotechnology, 1992. 36: p. 782-784. 63. Weickert, M.J., Doherty, D.H., Best, E.A., and Olins, P.O., Optimization of heterologous protein production in Escherichia coli. Current Opinion in Biotechnology, 1996. 7: p. 494-499. 64. Shamel, M.M., Ramachandran, K.B., and Hasan, M., Operational Stability of Lipase Enzyme : Effect of Temperature and Shear Developments in Chemical Engineering and Mineral Processing, 2005. 13: p. 599-604. 65. Lutz, R., Lozinski, T., Ellinger, T., and Bujard, H., Dissecting the functional program of Escherichia coli promoters: the combined mode of action of Lac repressor and AraC activator. Nucleic Acids Research, 2001. 29: p. 3873-3881. 66. Seo, H.S., Kim, S.E., Han, K.Y., Park, J.S., Kim, Y.H., Sim, S.J., and Lee, J., Functional fusion mutant of Candida antarctica lipase B (CalB) expressed in Escherichia coli. Biochimica et Biophysica Acta, 2009. 1794(3): p. 519-525. 67. Xu, Y., Lewis, D., and Chou, C.P., Effect of folding factors in rescuing unstable heterologous lipase B to enhance its overexpression in the periplasm of Escherichia coli. Applied Microbiology and Biotechnology, 2008. 79: p. 1035-1044.
摘要: 脂肪分解酶(Lipase)為一種存在於自然界多種生物體內的水解酵素。因其對於許多基質都具有專一性及選擇性,近年來已被廣泛使用在生物技術和工業應用上,例如:食品加工、特用化學品合成、環境工程、醫學檢測等。由於產率高、成本低且表現量穩定等特性,使大腸桿菌(Escherichia coli , E. coli) 成為生產重組蛋白質重要的宿主細胞,但其純化過程較為複雜,也有可能於蛋白質表現時產生沒有活性的包涵體(inclusion body),而使得生產難度增加。 本實驗運用表面表現系統生產目標蛋白,藉由冰核蛋白(ice nucleation protein, INP)之C端結合目標蛋白(Candida antarctica lipase A ,CALA)重組成融合蛋白而使其表現於細胞表面上。其誘導條件為:將含有表現質體的E. coli JM109 (DE3)於37℃,200 rpm下培養,待OD600約為0.8時加入0.1mM的IPTG,於15℃誘導表現24小時,之後進行酵素活性測定。經由電泳分析可以看出CALA有和INP結合並大量表現,但可能因蛋白質錯誤摺疊產生包涵體使活性降低,總活性和比活性分別約為0.285 U/ml和0.289 U/mg。為了提升蛋白質酵素活性,我們分別選殖fkpA、ppiA和skp三種攜伴蛋白,送入大腸桿菌中和CALA共同表現。實驗中發現當選殖攜伴蛋白基因ppiA與CALA共同表現時,添加0.1 mM IPTG和 5 g/L的誘導劑L-arabinose時有較佳的酵素總活性和比活性,約為0.64 U/ml 和0.392 U/mg,相較於未使用攜伴蛋白時分別提升了2.25倍和1.4倍。
Lipases are ubiquitous in nature and produced by several plants, animals, and microorganisms. Lipases are an important group of biotechnologically relevant enzymes and they find immense applications in food, dairy, detergent and pharmaceutical industries. Owing to the benefits of protein expression system in Escherichia coli, such as high production yield, low manufacturing cost, and well-established expression system, E. coli was used as a popular host to produce a wide variety of recombinant proteins. However, the drawbacks of the E. coli protein expression system were the complexity of protein purification and the ease of forming inclusion bodies. In this study, the surface display system via the ice nucleation protein: Xanthomonas campestris INP was used. Candida antarctica lipase A (CALA) was chosen as the target protein fusing to the C terminus of the INP segment. Lipase A was produced on E. coli cell’s surface. E. coli JM109 (DE3) harboring plasmid pINP-CALA was incubated at 37℃ and 200 rpm until OD600 reached about 0.8, followed by the addition of 0.1mM IPTG. The induction was carried out at 15℃ and 200 rpm for 24 h. The INP-CALA activity and its specific activity were obtained as 0.285 U/ml and 0.289 U/mg. In order to improve enzyme activity, three chaperone genes, such as fkpA, ppiA, and skp, were cloned into CALA surface display system, respectively, and coexpressed to produce CALA. The results showed the best activity and specific activity of CALA coexpressed with ppiA gene as 0.64 U/ml and 0.392 U/mg when induced by 0.1mM IPTG and 5 g/L L-arabinose . The CALA activity and its specific activity were increased by 2.25-fold and 1.4-fold, respectively.
URI: http://hdl.handle.net/11455/91579
其他識別: U0005-1308201515525500
文章公開時間: 2018-08-20
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.