Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91594
標題: 添加中草藥萃取液於牛樟芝液態發酵生產血管收縮酵素抑制劑之研究
Effect of addition of Chinese herbal extracts on ACEI production by Antrodia cinnamomea submerged cultivation
作者: Yi-Jing Li
李沂靜
關鍵字: Antrodia cinnamomea
angiotensin converting enzyme inhibitor (ACEI)
Gastrodia elata
Mesona chinensis
Scutellaria baicalensis
牛樟芝
血管收縮酵素抑制劑
天麻
仙草
黃芩
引用: 1. 張東柱、CAC101研究團隊, 牛樟芝的神奇療效. 2010: p. 54-55. 2. Sheng-Hua Wu, Z.-H.Y., Yu-Cheng Dai, Cheng-Tau Chen, Ching-Hua Su,Lung-Chung Chen, Wei-Che Hsu, and Guang-Yuh Hwang, Taiwanofungus, a polypore new genus. Fung. Sci, 2004. 19(3-4): p. 109–116. 3. 張東柱等人, 台灣特有藥用菇 牛樟芝(菇)的正確學名. 台灣食藥用菇類協會: p. 5-6. 4. 陳建名, 以造林樹種培育牛樟芝菌絲體及子實體誘導生成研究. 行政院農業委員會特有生物研究保育中心, 2010: p. 1-25. 5. Tun-Tschu Chang, W.-R.W., The Role of Four Essential Oils on Mycelial Growth and Basidiomatal Formation of Antrodia cinnamomea. Taiwan J For Sci 2008. 23: p. 105-10. 6. 廖宇賡, 以樟木及相思樹培養牛樟芝及其成分分析. 2011: p. 1-29. 7. Chiang, C.-C. and B.-H. Chiang, Processing characteristics of submerged fermentation of Antrodia cinnamomea in airlift bioreactor. Biochemical Engineering Journal, 2013. 73: p. 65-71. 8. 葉怡妏, 不同菇類菌絲體萃取物 ACE 抑制活性之探討. 東海大學化學工程與材料工程學系學位論文, 2010. 9. Kuo, M.C., et al., Immunomodulatory effect of Antrodia camphorata mycelia and culture filtrate. J Ethnopharmacol, 2008. 120(2): p. 196-203. 10. Geethangili, M. and Y.M. Tzeng, Review of Pharmacological Effects of Antrodia camphorata and Its Bioactive Compounds. Evid Based Complement Alternat Med, 2011.: p. 212641. 11. Qiao, X., et al., Metabolites identification and multi-component pharmacokinetics of ergostane and lanostane triterpenoids in the anticancer mushroom Antrodia cinnamomea. J Pharm Biomed Anal, 2015. 111: p. 266-76. 12. Liu, C.-J., C.-C. Chiang, and B.-H. Chiang, The elicited two-stage submerged cultivation of Antrodia cinnamomea for enhancing triterpenoids production and antitumor activity. Biochemical Engineering Journal, 2012. 64: p. 48-54. 13. YEN, T.-Y.S.A.G.-C., Antioxidant Properties of Antrodia camphorata in Submerged Culture. J. Agric. Food Chem, 2002(50): p. 3322-3327. 14. Haskó, G., Adenosine: an endogenous regulator of innate immunity. Trends in Immunology, 2004. 25(1): p. 33-39. 15. MEI-KUANG LU, J.-J.C., WEN-LIN LAI, YEN-JU LIN, AND NAI-KUEI HUANG, Fermented Antrodia cinnamomea Extract Protects Rat PC12 Cells from Serum Deprivation-Induced Apoptosis The Role of the MAPK Family. J. Agric. Food Chem, 2008(56): p. 865-874. 16. 陳勁初, e.a., 台灣特有真菌-樟芝菌絲體之開發. Fungal Science, 2001. 16(1&2): p. 7-22. 17. Lu, M.C., et al., Recent research and development of Antrodia cinnamomea. Pharmacol Ther, 2013. 139(2): p. 124-56. 18. Hu, Y.-D., et al., Enabling the biosynthesis of Antroquinonol in submerged fermentation of Antrodia camphorata. Biochemical Engineering Journal, 2014. 91: p. 157-162. 19. Liu, D.-Z., et al., Antihypertensive Activities of a Solid-State Culture ofTaiwanofungus camphoratus(Chang-Chih) in Spontaneously Hypertensive Rats. Bioscience, Biotechnology and Biochemistry, 2014. 71(1): p. 23-30. 20. Detection, Evaluation, and Treatment of High Blood Pressure (JNC 7). JAMA 2003(289): p. 2560-2572. 21. Regulska, K., et al., How to design a potent, specific, and stable angiotensin-converting enzyme inhibitor. Drug Discov Today, 2014. 19(11): p. 1731-43. 22. ErdOs, E.G., Angiotensin I Converting Enzyme. Journal of the American Heart Association, 1975. 36(2): p. 247-255. 23. 莊少鈞, Prediction of the New Function of ACEi Food from ACE Polymorphism. Food Industry Research & Development Institute, 2011. 43(3): p. p33-38. 24. Erdmann, K., B.W. Cheung, and H. Schroder, The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. J Nutr Biochem, 2008. 19(10): p. 643-54. 25. Vermeirssen, V., J.V. Camp, and W. Verstraete, Bioavailability of angiotensin I converting enzyme inhibitory peptides. British Journal of Nutrition, 2004. 92(03): p. 357. 26. Lin, L., S. Lv, and B. Li, Angiotensin-I-converting enzyme (ACE)-inhibitory and antihypertensive properties of squid skin gelatin hydrolysates. Food Chemistry, 2012. 131(1): p. 225-230. 27. Miguel, M., et al., ACE-inhibitory and antihypertensive properties of a bovine casein hydrolysate. Food Chemistry, 2009. 112(1): p. 211-214. 28. Pan, D. and Y. Guo, Optimization of sour milk fermentation for the production of ACE-inhibitory peptides and purification of a novel peptide from whey protein hydrolysate. International Dairy Journal, 2010. 20(7): p. 472-479. 29. Aleixandre, M.M.a.A., Antihypertensive peptides derived from egg proteins The Journal of Nutrition, 2006. 136: p. 0022-3166. 30. LI-CHAN*, W.M.Y.L.A.E.C.Y., Angiotensin I Converting Enzyme Inhibitory Peptides from In Vitro Pepsin-Pancreatin Digestion of Soy Protein. J. Agric. Food Chem, 2005(53): p. 3369-3376 31. Muguruma, M., et al., Identification of pro-drug type ACE inhibitory peptide sourced from porcine myosin B: Evaluation of its antihypertensive effects in vivo. Food Chemistry, 2009. 114(2): p. 516-522. 32. Yu, Y., et al., Isolation and characterization of angiotensin I-converting enzyme inhibitory peptides derived from porcine hemoglobin. Peptides, 2006. 27(11): p. 2950-6. 33. Wu, S., et al., Purification and identification of Angiotensin-I Converting Enzyme (ACE) inhibitory peptide from lizard fish (Saurida elongata) hydrolysate. Journal of Functional Foods, 2015. 13: p. 295-299. 34. Onuh, J.O., et al., Kinetics of in vitro renin and angiotensin converting enzyme inhibition by chicken skin protein hydrolysates and their blood pressure lowering effects in spontaneously hypertensive rats. Journal of Functional Foods, 2015. 14: p. 133-143. 35. Akıllıoğlu, H.G. and S. Karakaya, Effects of heat treatment and in vitro digestion on the Angiotensin converting enzyme inhibitory activity of some legume species. European Food Research and Technology, 2009. 229(6): p. 915-921. 36. Liu, X., et al., Angiotensin converting enzyme (ACE) inhibitory, antihypertensive and antihyperlipidaemic activities of protein hydrolysates from Rhopilema esculentum. Food Chem, 2012. 134(4): p. 2134-40. 37. Kim, J.H., Lee, D. H., Jeong, S. C., Chung, K. S., & Lee, J. S, Characterization of Antihypertensive Angiotensin I-Converting Enzyme Inhibitor from Saccharomyces cerevisiae. Journal of Microbiology and Biotechnology, 2004(14): p. 1318-1323. 38. Jang, J.H., et al., Characterisation of a new antihypertensive angiotensin I-converting enzyme inhibitory peptide from Pleurotus cornucopiae. Food Chem, 2011. 127(2): p. 412-8. 39. Choi, C., Yang, Ra, & Suh, Angiotensin I-converting enzyme inhibitor from Grifola frondosa. food research international, 2001(34): p. 177-182. 40. Hyoung Lee, D., et al., Isolation and characterization of a novel angiotensin I-converting enzyme inhibitory peptide derived from the edible mushroom Tricholoma giganteum. Peptides, 2004. 25(4): p. 621-7. 41. Lau, C.C., et al., Proteomic analysis of antihypertensive proteins in edible mushrooms. J Agric Food Chem, 2012. 60(50): p. 12341-8. 42. Hiroyuki Fujita , M.Y., LKPNM a prodrug-type ACE-inhibitory peptide derived from fish protein. Immunopharmacology, 1999(44): p. 123-127. 43. Alemán, A., M.C. Gómez-Guillén, and P. Montero, Identification of ace-inhibitory peptides from squid skin collagen after in vitro gastrointestinal digestion. Food Research International, 2013. 54(1): p. 790-795. 44. Wang, J., et al., Purification and identification of a ACE inhibitory peptide from oyster proteins hydrolysate and the antihypertensive effect of hydrolysate in spontaneously hypertensive rats. Food Chem, 2008. 111(2): p. 302-8. 45. Himaya, S.W.A., et al., An active peptide purified from gastrointestinal enzyme hydrolysate of Pacific cod skin gelatin attenuates angiotensin-1 converting enzyme (ACE) activity and cellular oxidative stress. Food Chemistry, 2012. 132(4): p. 1872-1882. 46. Tanzadehpanah, H., et al., Identification of a novel angiotensin-I converting enzyme inhibitory peptide from ostrich egg white and studying its interactions with the enzyme. Innovative Food Science & Emerging Technologies, 2013. 18: p. 212-219. 47. Wu, S., et al., Optimization of hydrolysis conditions for the production of angiotensin-I converting enzyme-inhibitory peptides and isolation of a novel peptide from lizard fish (Saurida elongata) muscle protein hydrolysate. Mar Drugs, 2012. 10(5): p. 1066-80. 48. Escudero, E., et al., Antihypertensive activity of peptides identified in the in vitro gastrointestinal digest of pork meat. Meat Sci, 2012. 91(3): p. 382-4. 49. Blanca Hernández-Ledesma, I.R., Antihypertensive peptides: production, bioavailability and incorporation into foods. Advances in Colloid and Interface Science, 2011(165): p. 23-35. 50. Shiozaki, K., et al., Identification of oyster-derived hypotensive peptide acting as angiotensin-I-converting enzyme inhibitor. Fisheries Science, 2010. 76(5): p. 865-872. 51. Michaelis, L., et al., The original Michaelis constant: translation of the 1913 Michaelis-Menten paper. Biochemistry, 2011. 50(39): p. 8264-9. 52. Menten, L.M.a.M.M.L., The Kinetics of Invertase Action. Journal of the American Chemical Society 1934. 56 (3): p. 658–666. 53. 昆明植物研究所, 中國高等植物資料庫全庫. 中國科學院微生物研究所, 2010. 54. Ahn, E.K., et al., Anti-inflammatory and anti-angiogenic activities of Gastrodia elata Blume. J Ethnopharmacol, 2006. 110(3): p. 476-82. 55. 黃順爵, 天麻之生藥鑑定、成分分析與降血壓作用研究. 中國醫藥學院藥學研究所博士論文, 2000. 56. Zhou, B.H., et al., Antidepressant-like activity of the Gastrodia elata ethanol extract in mice. Fitoterapia, 2006. 77(7-8): p. 592-4. 57. Tang, W., Eisenbrand, G., Gastrodia elata Bl. Chinese Drugs of Plant Origin. Springer-Verlag, Berlin, Heidelberg 1992: p. 545–548. 58. YEN, C.-Y.H.A.G.-C., Antioxidant Activity of Phenolic Compounds Isolated from Mesona procumbens Hemsl. J. Agric. Food Chemistry, 2002(50): p. 2993-2997. 59. 胡敏夫等人, 仙草品系間農藝性狀與化學組成分之比較. Journal of Agricultural Research China, 1997. 46(1): p. 32-41. 60. 楊祖馨等人, 關於仙草化合物之研究. 台大農化, 1954. 3(1-4). 61. Widyaningsih, T.D., Cytotoxic Effect of Water, Ethanol and Ethyl Acetate Extract of Black Cincau (Mesona Palustris BL) Against HeLa Cell Culture. APCBEE Procedia, 2012. 2: p. 110-114. 62. Shyu, M.H., T.C. Kao, and G.C. Yen, Hsian-tsao (Mesona procumbens Heml.) prevents against rat liver fibrosis induced by CCl(4) via inhibition of hepatic stellate cells activation. Food Chem Toxicol, 2008. 46(12): p. 3707-13. 63. Yeh, C.T., W.H. Huang, and G.C. Yen, Antihypertensive effects of Hsian-tsao and its active compound in spontaneously hypertensive rats. J Nutr Biochem, 2009. 20(11): p. 866-75. 64. Li, H.-B. and F. Chen, Isolation and purification of baicalein, wogonin and oroxylin A from the medicinal plant Scutellaria baicalensis by high-speed counter-current chromatography. Journal of Chromatography A, 2005. 1074(1-2): p. 107-110. 65. Seo, O.N., et al., Determination of polyphenol components of Korean Scutellaria baicalensis Georgi using liquid chromatography–tandem mass spectrometry: Contribution to overall antioxidant activity. Journal of Functional Foods, 2013. 5(4): p. 1741-1750. 66. Kau Fong, S.Y., et al., Herb-drug interactions between Scutellariae Radix and mefenamic acid: Simultaneous investigation of pharmacokinetics, anti-inflammatory effect and gastric damage in rats. J Ethnopharmacol, 2015. 67. Zhonghong Gao, K.H., Xiangliang Yang, Huibi Xu, Free radical scavenging and antioxidant activities of favonoids extracted from the radix of Scutellaria baicalensis Georgi. Biochimica et Biophysica Acta 1999(1472 ): p. 643-650. 68. Kong, E.K., et al., A novel anti-fibrotic agent, baicalein, for the treatment of myocardial fibrosis in spontaneously hypertensive rats. Eur J Pharmacol, 2011. 658(2-3): p. 175-81. 69. Kimura, Y. and M. Sumiyoshi, Anti-tumor and anti-metastatic actions of wogonin isolated from Scutellaria baicalensis roots through anti-lymphangiogenesis. Phytomedicine, 2013. 20(3-4): p. 328-36. 70. Yang, F.-C., H.-C. Huang, and M.-J. Yang, The influence of environmental conditions on the mycelial growth of Antrodia cinnamomea in submerged cultures. Enzyme and Microbial Technology, 2003. 33(4): p. 395-402. 71. Jianping Wu, R.E.A., Alister D. Muir, Improved method for direct high-performance liquid chromatography assay of angiotensin-converting enzyme-catalyzed reactions. Journal of Chromatography A, 2002(950): p. 125-130. 72. Jakubczyk, A., et al., The impact of fermentation and in vitro digestion on formation angiotensin converting enzyme (ACE) inhibitory peptides from pea proteins. Food Chem, 2013. 141(4): p. 3774-80.
摘要: 牛樟芝(Antrodia cinnamomea),為台灣特有種真菌,文獻研究顯示其富含多醣體、三萜類、倍半萜類化合物和類固醇物質,在抗腫瘤、抗氧化、消炎及抗高血壓等都有顯著的效果。而中草藥天麻、仙草和黃芩具有防止血栓形成和降血壓等生理活性功能,常用於中藥師治療高血壓之藥方中。為建立中草藥(天麻、黃芩和仙草)的萃取液與牛樟芝在降血壓功效上是否具有協同或加乘之功效,進行以中草藥萃取液做為牛樟芝醱酵之培養原料,探討中草藥(天麻、黃芩和仙草)萃取液對提昇樟芝ACEI的影響。 在探討中草藥的影響之前,首先探討四種不同碳源之影響。以glucose對牛樟芝生長與ACEI最活性最高,總抑制相當於2220.0 ng captopril/L之濃度;接下來以五種不同氮源添加與不同天數培養試驗,以yeast extract 為氮源培養時,在第八天有最高產量,其值為9.44gDW/L;而以peptone對牛樟芝生長與ACEI效果最好,在第九天有最高抑制效果,總抑制相當於4929.5 ng captopril/L。 找出適當的碳氮源之條件之後,加入中草藥萃取物為培養基作為探討變因。菌量生長方面,以添加10g/L天麻萃取液產出之菌量最多,為13.59gDW/L;添加10g/L仙草萃取液培養之樟芝擁有最高的總抑制效果,抑制效果相當於8202.1 ng captopril/L,相當於控制組的3.2倍;而添加不同濃度的黃芩萃取液會使樟芝的菌量和抑制活性都降低。因此,可得知天麻有助於樟芝之生長,而仙草有提升樟芝的ACEI的效果。
Antrodia cinnamomea is an endemic species of fungi in Taiwan. Previous reports indicated that fruiting body of A. cinnamomea is characterized by varied physiological active compounds such as polysaccharrides, triterpenes, sesquiterpenes, and steroids et al, which proved to be effective for anti-oxidation, anti-tumor,anti-inflammatory, hepatoprotective and antihypertension treatments. Traditional Chinese herbs, such as Gastrodia elata, Mesona chinensis and Scutellaria baicalensis have been reported having the function of reducing blood pressure. In this project, the submerged culture of A.cinnamomea was carried out associated with the addition of these three Chinese herbal extracts, in order to elevate the ACEI activity of A.cinnamomea. In carbon source test, glucose gave had the highest biomass and ACE inhibition. In the nitrogen source test, yeast extract yeilded the highest biomass at eighth-day and peptone as nitrogen source produced the highest ACE inhibition, which was equal to 4929.5 ng captopril/L. The addition of Chinese herbal extracts to A.cinnamomea cultivation was conducted. The highest biomass had 13.59 gDW/L by adding 10g/L of Gastrodia elata ectracts. The highest ACE inhibition was equal to 8202.1 ng captopril/L by adding 10g/L of Mesona chinensis extracts, which was 3.2 times higher than the control test. However, the biomass and ACE inhibition were both decreased by adding different concentration of Scutellaria baicalensis extracts.
URI: http://hdl.handle.net/11455/91594
其他識別: U0005-1408201514574900
文章公開時間: 10000-01-01
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.