Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91600
標題: 由 4-異丙烯基苯酚合成含醇胺芳香族雙苯異質官能基中間體及其在新穎高分子預聚物之合成及應用
Dual-Functional Bis-phenyl Intermediates with Hydroxyl and Amino Functional Groups – Their Syntheses from BPA and Some Applications
作者: Yi-Ting Shen
沈怡廷
關鍵字: No
引用: 1. (a) Schuur, M. v. d.; Feijen, J.; Gaymans, R. J., Synthesis and characterization of bisester-amide segments of uniform and random length. Polymer 2005, 46 (13), 4584-4595; (b) Kuo, M.-C.; Jeng, R.-J.; Su, W.-C.; Dai, S. A., Iterative Synthesis of Extenders of Uniform Chain Lengths for Making Thermo-Reversible Polyurethane Supramolecules. Macromolecules 2008, 41 (3), 682-690. 2. Wang, S.; Wang, J.; Liu, T.; Mo, Z.; Zhang, H.; Yang, D.; Wu, Z., The crystal structure and drawing-induced polymorphism in poly(aryl ether ketone)s, 2. Poly(ether ether ketone ketone), PEEKK. Macromolecular Chemistry and Physics 1997, 198 (4), 969-982. 3.林信佑. 國立中興大學化學工程學系博士論文,2010. 4.陳星儒. 國立中興大學化學工程學系碩士論文,2009. 5.廖宜哲. 國立中興大學化學工程學系碩士論文,2011. 6.Dai, S. H.; Lin, C. Y.; Rao, D. V.; Stuber, F. A.; Carleton, P. S.; Ulrich, H., Selective Indirect Oxidation of Phenol to Hydroquinone and Catechol. J Org Chem 1985, 50 (10), 1722-1725. 7. Zimmermann, E. K.; Stille, J. K., Photoresponsive Polyquinolines. Macromolecules 1985, 18 (3), 321-327. 8. Crivello, J. V.; Lai, Y. L., Synthesis and photopolymerization of monomers bearing isopropenylphenoxy groups. Journal of Polymer Science Part A: Polymer Chemistry 1995, 33 (4), 653-663. 9. Corson, B. B.; Heintzelman, W. J.; Schwartzman, L. H.; Tiefenthal, H. E.; Lokken, R. J.; Nickels, J. E.; Atwood, G. R.; Pavlik, F. J., Preparation of Vinylphenols and Isopropenylphenols. The Journal of Organic Chemistry 1958, 23 (4), 544-549. 10. Schnell, H.; Krimm, H., Formation and Cleavage of Dihydroxydiarylmethane Derivatives. Angewandte Chemie International Edition in English 1963, 2 (7), 373-379. 11. Imai, Y.; Abe, S.; Ueda, M., Preparation and properties of aromatic polyamide-esters from aminophenols and aromatic diacid chlorides. Journal of Polymer Science: Polymer Chemistry Edition 1981, 19 (12), 3285-3291. 12. Theil, F., Synthesis of diaryl ethers: A long-standing problem has been solved. Angew Chem Int Edit 1999, 38 (16), 2345-2347. 13. Heinrich Krimm, H. S. Process for preparing 2-(4-hydroxyphenyl)-2-(4''-aminophenyl)-methanes. US Patent 3311660,1963. 14. Thiruvasagam, P.; Venkatesan, D., Synthesis and Characterization of Processable Aromatic Polyimides. High Performance Polymers 2010, 22 (6), 682-693. 15. White, E. F. T., Polyurethane handbook Edited by G. Oertel, Hanser Publishers, Munich, 1985. pp. 629, price E104.70. ISBN 3-446-13671-1. British Polymer Journal 1986, 18 (6), 403-404. 16. Jr., L. L. H., Segmented Polyurethanes: Properties as a Function of Segment Size and Distribution. Macromolecules. 17. Woodward, P. J.; Hermida Merino, D.; Greenland, B. W.; Hamley, I. W.; Light, Z.; Slark, A. T.; Hayes, W., Hydrogen Bonded Supramolecular Elastomers: Correlating Hydrogen Bonding Strength with Morphology and Rheology. Macromolecules 2010, 43 (5), 2512-2517. 18. Holly, F. W.; Cope, A. C., Condensation Products of Aldehydes and Ketones with o-Aminobenzyl Alcohol and o-Hydroxybenzylamine. Journal of the American Chemical Society 1944, 66 (11), 1875-1879. 19. Burke, W. J., 3,4-Dihydro-l,3,2H-Benzoxazines. Reaction of p-Substituted Phenols with N,NDimethylo lamines. American Chemical Society 1949, 609. 20. Takeichi, T.; Kawauchi, T.; Agag, T., High Performance Polybenzoxazines as a Novel Type of Phenolic Resin. Polymer Journal 2008, 40 (12), 1121-1131. 21. Ishida, H.; Rodriguez, Y., Curing Kinetics of a New Benzoxazine-Based Phenolic Resin by Differential Scanning Calorimetry. Polymer 1995, 36 (16), 3151-3158. 22. Brunovska, Z.; Liu, J. P.; Ishida, H., 1,3,5-Triphenylhexahydro-1,3,5-triazine - active intermediate and precursor in the novel synthesis of benzoxazine monomers and oligomers. Macromolecular Chemistry and Physics 1999, 200 (7), 1745-1752. 23. Lin, C. H.; Chang, S. L.; Hsieh, C. W.; Lee, H. H., Aromatic diamine-based benzoxazines and their high performance thermosets. Polymer 2008, 49 (5), 1220-1229. 24. Takeichi, T.; Kano, T.; Agag, T., Synthesis and thermal cure of high molecular weight polybenzoxazine precursors and the properties of the thermosets. Polymer 2005, 46 (26), 12172-12180. 25. Agag, T.; Takeichi, T., High-molecular-weight AB-type benzoxazines as new precursors for high-performance thermosets. Journal of Polymer Science Part A: Polymer Chemistry 2007, 45 (10), 1878-1888. 26. Ishida, H. U. S. P., 543,516, 1996. 27. Hajime Kimura, A. M., Hidemitsu Sugito, Kiichi Hasegawa, Keiko OhtsukaandAkinori Fukuda1, New thermosetting resin from poly(p-vinylphenol) based benzoxazine and epoxy resin. Polymer 2000. 28. M. A. Espinosa, V. C. a. G., Synthesis and characterization of benzoxazine-based phenolic resins: Crosslinking study. Polymer 2003, 90 (2),470-781. 29. Lin, C. H.; Chang, S. L.; Shen, T. Y.; Shih, Y. S.; Lin, H. T.; Wang, C. F., Flexible polybenzoxazine thermosets with high glass transition temperatures and low surface free energies. Polymer Chemistry 2012, 3 (4), 935. 30. Kiskan, B.; Yagci, Y.; Ishida, H., Synthesis, characterization, and properties of new thermally curable polyetheresters containing benzoxazine moieties in the main chain. Journal of Polymer Science Part A: Polymer Chemistry 2008, 46 (2), 414-420. 31. Baqar, M.; Agag, T.; Ishida, H.; Qutubuddin, S., Poly(benzoxazine-co-urethane)s: A new concept for phenolic/urethane copolymers via one-pot method. Polymer 2011, 52 (2), 307-317. 32. Jannasch, P., Preparation and characterisation of aggregating comblike poly(propylene oxide). Polymer 2000, 41 (18), 6701-6707. 33. Mathie, R. T.; Ralevic, V.; Burnstock, G., Portal vascular responsiveness to sympathetic stimulation and nitric oxide in cirrhotic rats. J Hepatol 1996, 25 (1), 90-97.
摘要: 此研究係起源於本實驗室所發展之新技術,採以 4-異丙烯基苯酚(Isopropenyl Phenol, IPP) 為起始原料,以逐步法合成芳香族雙苯結構並含醇、胺新穎之異質雙官能基中間體(Dual-Functional Bis-phenylIntermediates with Hydroxyl and Amino Functional Groups)。 本實驗先由雙酚 A (Bisphenol A, BPA)之熱裂解製備 4-IPP,再利用 4-IPP 上的兩個官能基在不互相干擾之特性下進行反應,例如經由IPP 酚基之烷基醚化反應(Alkoxylation)可接上不同反應性的醚醇(Alkoxyether Alcohols)官能基,分別具一級醇(1o-OH)或二級醇(2o-OH)之第一次官能基化,接著利用另一端的異丙烯基與不同苯胺進行烷基化反應(Alkylation)形成含醇、胺芳香族雙苯 A 結構之六種異質雙官能基中間體,已成功合成並開發出六種之雙官能基中間體,且步驟簡單且高效率、高產率,產率達 80% 以上。 利用前面所製備的中間體,使具有高反應性的胺基和二元異氰酸鹽反應,而低反應性的醇基則不受影響,精準地合成聚胺酯高分子硬鏈段預聚物。利用反應的選擇性,製備出具有高產率(80%以上)、高純度(95%以上)、窄分子量分佈(PD≦1.3)等特點的硬鏈段。未來也可將其作為硬鏈段鏈延長劑合成聚胺酯彈性體,並研究其對所合成 PU彈性體(PU Elastomers)特性上之優勢。 另外,將 DP-E-A 與 DP-P-A 分別與脂肪族或芳香族的二元異氰酸鹽反應,合成熱可塑形工程塑膠(PU Engineering Themo-plastics)。除了利用 H12MDI 及 IPDI 所製備出的聚胺酯高分子性質不佳之外,MDI 及 HDI 系列的聚胺酯高分子皆有良好的性質 其中 又以 MPUE。,之結果最佳,其分子量高達八萬,玻璃轉移溫度為 108℃。 另一中間體(DP-H-A)之應用為與多聚甲醛反應,合成含有多Benzoxazine 之環狀化合物。期望藉其結構上之優勢,開發出高價值的聚合材料。 希望藉由本研究 利用 BPA 所衍生的各種異質雙官能基中間體之,特性,用於開發更多樣化及更優質之高分子材料,帶來高值化之應用領域。
This study has been a portion of the recent effort of our research group to develop new dual-function polymer intermediates from isopropenyl phenol (IPP), which is originated from the cracking of bisphenol-A (BPA). One of our goals has been to functionalize IPP followed by oxidation of isopropenyl group into hydroquinone derivatives. On the other hand, my effort in this study has focused on the alkylation of anilines by IPP derivatives into dual function hydroxyl ,amino bis-phenyl (Bis-Ph-H-A) intermediates. IPP could be readily obtained from BPA through a base-catalyzed thermolysis. In my process development, IPP was alkoxylated first with ethylene carbonate or propylene carbonate into alkoxylated IPP possessing either ethoxylated primary ether alcohol or propoxylated secondary ether alcohol of IPP. These IPP derivatives were used to alkylate anilines to bis-phenyl (Bis-Ph-H-A) compounds with hydroxyl and amino functionalized groups. All of the alkylation reactions were catalyzed by aniline-hydrochloride in formation of the final products in the yields in excess of 80% isolated yields. Since the synthesized new intermediates have a high-reactive amino group on one-side of the molecule and a less-reactive OH on the other, they were selectively added to diisocyanates on the amine side and leave the other side mostly un-touched. This selective methodology has resulted in making four PU hard-segment extenders (HSEH、HSPH、HSEM、 HSPM) of narrow molecular weight distribution with PD of ≦1.3 for future PU formulation study. The prepared DP-E-A and DP-P-A intermediates have also been utilized in preparation of PU Engineering Thermoplastics(ETPs) by direct mixing them with aliphatic and aromatic diisocyanates. Except for those from H12-MDI and IPDI, PU plastics with molecular weights of greater than 80,000s with good film properties were prepared using MDI and HDI with DP-E-A or DP-H-A. In the case of MDI derived product, high Tg films with flexable films were obtained. In yet another synthetic effort, cyclic polybezozaxines oligomers with functional groups of 3,4, and 5 have been prepared and characterized from DP-H-A intermediates. This is perhaps in the first known case of poly-benzoxzines prepared with ring structures. Through these new intermediates, many new themoset polymer materials could be opened up for study and possibly brought about the high value polymeric materials.
URI: http://hdl.handle.net/11455/91600
其他識別: U0005-3105201510443400
文章公開時間: 2018-07-15
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.