Please use this identifier to cite or link to this item:
標題: 製備低壓/高通量氧化石墨烯薄膜去除水中鈣鎂離子之研究
Preparation of high flux/low pressure graphene oxide membranes for Ca(II) and Mg(II) removal from water
作者: Ying-Chu Chen
關鍵字: 聚乙烯醇
Polyvinyl alcohol
Graphene oxide membrane
Filtration flux
Magnesium ion
Calcium ion
引用: Ajmani, G.S., Goodwin, D., Marsh, K., Fairbrother, D.H. Schwab, K.J., Jacangelo, J.G., Huang, H. (2012) Modification of low pressure membranes with carbon nanotube layers for fouling control Water Research 46(17), 5645–5654. Amini, M., Jahanshahi, M., Rahimpour, A., (2013) Synthesis of novel thin film nanocomposite (TFN) forward osmosis membranes using functionalized multi-walled carbon nanotubes. J. Membr. Sci. 435, 233–241. Bao, Q., Zhang, H., Yang, J.X., Wang, S., Tang, D.Y., Jose, R., Ramakrishna, S., Lim, C.T., Loh, K.P. (2010). Graphene–polymer nanofiber membrane for ultrafast photonics. Adv. Funct. Mater. 20(5), 782-791. Barrett, E.P., Joyner, L.G., Halenda, P.P. (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73(1), 373-380. Bellona, C., Drewes, J.E. Xu, P., Amy, G. (2004) Factors affecting the rejection of organic solutes during NF/RO treatment─a literature review. Water Research 38, 2795-2809. Boehm, H.P. (1994) Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon, 32: 759-769. Bolto, B., Tran, T., Hoang, M., Xie, Z. (2009) Crosslinked poly (vinyl alcohol) membranes. Prog. Polym. Sci. 34(9), 969-981. Brunet, L., Lyon, D.Y., Zodrow, K., Rouch, J.C., Caussat, B., Serp, P., Jean-Christophe, R., Wiesner, M.R., Alvarez, P.J.J., (2008) Properties of membranes containing semi-dispersed carbon nanotubes. Environ. Eng. Sci. 2(4), 565–576. Choi, J.H., Jegal, J., Kim, W.N., (2006) Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes. J. Membr. Sci. 284(1), 406–415. Compton, O. C., Nguyen, S. T. (2010) Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon‐ Based Materials. Small 6(6), 711-723. Cui, Z.F., Muralidhare, H.S. (2010) Membrane technology. Elsevier, Burlington, USA. Das, R., Ali, M.E., Hamid, S.B.A., Ramakrishna, S., Chowdhury, Z.Z. (2014) Carbon nanotube membranes for water purification: A bright future in water desalination. Desalination 336, 97–109. Dick, R., Nicolas, L. (1975) Membranes composites preparees a partir d''alcool polyvinylique et de diisocyanate de toluylene destinees a l''osmose inverse. Desalination 17(3), 239-255. Förch, R., Schönherr, H., Jenkins, A.T.A. (2009) Surface design: applications in bioscience and nanotechnology. Wiley. Goldstein, J. I., Newbury, D. E., Echlin, P., Joy, D. C., Romig Jr, A. D., Lyman, C. E., Lifshin, E. (1992) Scanning electron microscopy and X-ray microanalysis. Cap 3, 69-147. Gorenflo, A., Velazquez-Padron, D., Frimmel, F.H. (2003) Nanofiltration of a German groundwater of high hardness and NOM content: performance and costs. Desalination 151(3), 253-265. Hamid, N.A.A., Ismail, A.F., Matsuura, T., Zularisam, A.W., Lau, W.J., Yuliwati, E., Abdullah, M.S. (2011) Morphological and separation performance study of polysulfone/titanium dioxide (PSF/TiO2) ultrafiltration membranes for humic acid removal. Desalination 273(1), 85–92. Han, S., Zhao, F., Sun, J., Wang, B., Wei, R., Yan, S. (2013) Removal of p-nitrophenol from aqueous solution by magnetically modified activated carbon. J. Magn. Magn. Mater. 341, 133-137. Hartono, T., Wang, S., Ma, Q., Zhu, Z. (2009) Layer structured graphite oxide as a novel adsorbent for humic acid removal from aqueous solution. J. Colloid Interface Sci. 333(1), 114-119. Hinds, B.J., Chopra, N., Rantell, T., Andrews, R., Gavalas, V., Bachas, L.G., (2004) Aligned multiwalled carbon nanotube membranes. Science 303(5654), 62–65. Hsieh, H.P. (1996) Inorganic membranes for separation and reaction. Elsevier, Amsterdam, The Netherlands. Koyuncu, I. (2002) Reactive dye removal in dye/salt mixtures by nanofiltration membranes containing vinylsulphone dyes: effects of feed concentration and cross flow velocity. Desalination 143(3), 243-253. Lang, K., Sourirajan, S., Matsuura, T., Chowdhury, G. (1996) A study on the preparation of polyvinyl alcohol thin–film composite membranes and reverse osmosis testing. Desalination 104(3), 185-196. Li, B., Cao, H. (2011) ZnO@ graphene composite with enhanced performance for the removal of dye from water. J. Mater. Chem. 21(10), 3346-3349. Liu, Y., Wang, W., Wang, Y., Peng, X. (2014) Homogeneously assembling like-charged WS2 and GO nanosheets lamellar composite films by filtration for highly efficient lithium ion batteries. Nano Energy 7, 25-32. Luo, M.L., Zhao, J.Q., Tang, W., Pu, C.S. (2005) Hydrophilic modification of poly (ether sulfone) ultrafiltration membrane surface by self-assembly of TiO2 nanoparticles. Applied Surface Science 249(1), 76-84. Mallevialle, J., Odendaal, P.E., Wiesner, M.R., (1996) Water Treatment Membrane Processes. American Water Works Association. Molinari, R., Palmisano, L., Drioli, E., Schiavello, M. (2002) Studies on various reactor configurations for coupling photocatalysis and membrane processes in water purification. J. Membr. Sci. 206(1), 399-415. Mulder, M. (1991) Basic Principles of Membrane Technology. Springer, Londen, UK. Mulder, M.H.V., (1996) Basic principles of membrane technology. 89-108. Springer, Dordrecht, The Netherlands. Munir, C., (1998) Ultrafiltration and microfiltration handbook. Technomic, Lancaster, UK. Nicolaisen, B. (2002) Developments in membrane technology for water treatment. Desalination 153, 355-360. Rautenbach, R., Albrecht, R. (1989) Memebrane process. Wiley, New York, UK. Reverse Osmosis and Nanofiltration. (1999) American Water Works Association: M46, Denver, USA. Richard, W. B. (2004) Membrane technology and applications. Wiley, New York, USA. Sawyer, C.N., McCarty, P.L., Parkin, G.F. (2003) Chemistry for Environment Engineering and Science. 587-590. McGraw Hill, New York, USA. Schaep, J., Van der Bruggen, B., Uytterhoeven, S., Croux, R., Vandecasteele, C., Wilms, D., Houtte, E.V., Vanlerberghe, F. (1998) Removal of hardness from groundwater by nanofiltration. Desalination 119(1), 295-301. Schäfer, A.I., Fane, A.G., Waite, T.D. (2000) Fouling effects on rejection in the membrane filtration of natural waters. Desalination 131(1), 215-224. Song, H., Shao, J., He, Y., Liu, B., Zhong, X. (2012) Natural organic matter removal and flux decline with PEG–TiO2-doped PVDF membranes by integration of ultrafiltration with photocatalysis. J. Membr. Sci. 405–406, 48–56. Thangavel, S., Venugopal, G. (2014) Understanding the adsorption property of graphene-oxide with different degrees of oxidation levels. Powder Technol. 257, 141-148. Van der Bruggen, B., Everaert, K., Wilms, D., Vandecasteele, C. (2001) Application of nanofiltration for removal of pesticides, nitrate and hardness from ground water: rejection properties and economic evaluation. J. Membr. Sci. 193(2), 239-248. Van der Bruggen, B., Vandecasteele, C. (2003) Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry. Environmental Pollution, 122(3), 435-445. Vrijenhoek, E.M., Hong, S., Elimelech, M. (2001) Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes. J. Membr. Sci. 188(1), 115-128. Wang, L.K., Chen, J.P., Hung, Y.T., Shammas, N.K. (2011) Membrane and desalination technologies, Springer, New York, USA. Wetzel, R.G., Likens, G.E. (2000) The inorganic carbon complex: alkalinity, acidity, CO2, pH, total inorganic carbon, hardness, aluminum. Limnological Analyses. 113-135. Springer, New York, USA. Xu, C., Cui, A., Xu, Y., Fu, X. (2013) Graphene oxide–TiO2 composite filtration membranes and their potential application for water purification. Carbon 62, 465-471. Yang, S.T., Chen, S., Chang, Y., Cao, A., Liu, Y., Wang, H. (2011) Removal of methylene blue from aqueous solution by graphene oxide. J. Colloid Interface Sci. 359(1), 24-29. Yao, Y., Miao, S., Liu, S., Ma, L. P., Sun, H., Wang, S. (2012) Synthesis, characterization, and adsorption properties of magnetic Fe3O4 @ graphene nanocomposite. Chem. Eng. J. 184, 326-332. Zhu, X., Tang, L., Wee, K.H., Zhao, Y.H., Bai, R. (2011) Immobilization of silver in polypropylene membrane for anti-biofouling performance. Biofouling 27(7), 773–786. 洪玉珠,白秀華,1999,高雄地區自來水配水系統影響飲用性物質的調查及改善策略之探討(2/2),行政院環境保護署委託計畫報告。 陳秋楊,史午康,劉廷政,1999,飲用水水質標準總硬度與總溶解性固體合宜濃度之研究,中華民國自來水協會。 經濟部工業局,2000,廢水薄膜處理技術應用與推廣手冊。
摘要: 本研究致力於製備一複合薄膜,符合低壓力需求下即擁有高通量、高截流係數、低廢液比,與高穩定度,並探討此複合薄膜於掃流式過濾系統去除水中硬度鈣(Ca2+)、鎂離子(Mg2+)之可行性。薄膜主體為有機高分子聚乙烯醇(polyvinyl alcohol, PVA),以濕式相轉換法製成PVA 薄膜,添加無機物氧化石墨烯(graphene oxide, GO)製備 GO/PVA複合薄膜,並以氯化鐵(FeCl3)進行薄膜改質,製成 GO/PVA/Fe 改質複合薄膜;成膜後搭配交聯反應與熱處理改善薄膜性質。薄膜效能評估之研究,包含比較不同製備程序薄膜之效能、薄膜特性分析,並討論各項操作因子對薄膜過濾之通量(flux)與截流係數(rejection coefficient,Rc)之影響情形。 未經 FeCl3 改質之 PVA 與 GO/PVA 薄膜對水中硬度過濾效果極差(截流係數<0.2),改質後 Ca2+、Mg2+去除效果提升,以 PVA 添加 5 wt%GO 與 2 wt% FeCl3 為最佳比例;此改質複合薄膜於操作壓力 5 psi 時可達到通量 30 L/m2‧h、截流係數 0.75 以上。由不同薄膜過濾效能之比較,推測本研究去除 Ca2+、Mg2+主要機制為篩分搭配電性相斥。以遠低於商用膜之操作壓力範圍(3-10 psi)進行過濾,壓力與通量呈正相關,與截流係數呈負相關,以 5 psi 壓力操作下 Ca2+、Mg2+通量>30L/m2‧h、截流係數>0.8 為最佳操作壓力。系統溫度(10-40°C)增加水樣黏滯度下降、薄膜孔洞膨脹使通量提升,而對截流係數之影響小於0.1,考慮耗能與操作便利性,以 25°C 做為系統溫度。而離子強度(0-50mM)、pH 值(5-9)與初始濃度變化(200-500 mg/L)對過濾影響較小,前兩者於後續實驗不進行額外控制,初始濃度則使用自來水水質標準之300 mg/L。淨/廢水比例(1/2-1/6)降低時掃流速率加快,掃流容易帶走膜表積垢,減少孔洞阻塞使通量提升;低淨/廢水比使截流端廢液量增加,未進行截流端迴流之系統建議使用淨/廢水比例 1/4 為條件 GO/PVA/Fe。改質複合薄膜於長時間 24 小時連續過濾實驗中,通量與截流係數表現穩定,顯示其持久特性。雙層膜過濾測試結果顯示壓力控制為重要參數,當壓力達 13 psi 時,其過濾通量提升至 26 L/m2‧h,截流係數為0.90,並擁有較好的穩定性。 綜合以上研究成果,本研究製備之氧化石墨烯複合薄膜,經加鐵改質後,應用於過濾水中硬度(Ca2+、Mg2+),於低操作壓力下有高過濾通量與良好去除效果,相當具有發展與應用之潛力。
Preparation of the membrane which has high flux, high rejection coefficient (Rc), low permeate/retentate ratio and being very stable for long term filtration with low pressure driven is the goal of this study. And the separation performance of hardness (calcium, Ca2+ and magnesium, Mg2+) in an aqueous solution is also well studied. The matrix of composite membranes is the organic polymer, polyvinyl alcohol (PVA) which prepared by wet-phase inversion, and improved the membranes performance by cross-linking and heat treatment. The inorganic particle, graphene oxide (GO) is added in PVA membranes to prepare the GO/PVA composite membranes, and then the GO/PVA composite membranes is modified by iron(III) chloride (FeCl3) as the GO/PVA/Fe modified composite membranes. A series of experiment for membranes effectiveness evaluation are in the study, including preparation comparison, characteristic analysis and the influence of flux and Rc under different conditions. PVA and GO/PVA membranes have no effectiveness for hardness removal in aqueous solution (Rc<0.2). The FeCl3 modification can improve the hardness filtration performance with the best formulations by 5% GO and 2 wt% FeCl3 added which has the flux as 30 L/m2‧h and Rc>0.75 with 5 psi pressure driven. The electrostatic repulsion and sieving are the major mechanisms for Ca2+ and Mg2+ removal. To compare with the commercially available membranes, this study use a very low range of pressure driven (3-10 psi) for filtration. The pressure driven increment has positive correlation with flux and negative correlation with Rc. The optimal pressure driven is 5 psi, which results the flux>30 L/m2‧h and Rc>0.8 for Ca2+ and Mg2+. The temperature effects (10-40°C) indicate that flux increased with temperature by solution viscous force and membrane pore size increment, but the variation of Rc aren’t obvious with temperature. Thus, 25°C as the room temperature is selected for following filtration experiment. Ionic strength (0-50 mM), pH value (5-9) and initial concentration (200-500 mg/L) have less effects on Ca2+ and Mg2+ filtration. Permeate/retentate ratio effects (1/2-1/6) indicate that permeate/retentate ratio increases with the cross-flow velocity, which can reduced the fouling and the cake layer on membranes surface and then increases the flux and mass balance removal efficiency (RE). For low permeate/retentate ratio, the retentate flow is multiplied. If the cross-flow system operates without reflux, the permeate/retentate ratio of 1/4 is the best selection for Ca2+ and Mg2+ filtration. After 24-hour operation, the effectiveness of membranes still displays stable. The test shows that pressure driven is the key factor for double layer membrane filtration. To compare with the single layer membrane filtration, the double layer one gets lower flux, higher Rc and more trustable in stability with the same pressure driven. It has the flux as 26 L/m2‧h and Rc as 0.90 with 13 psi pressure driven. Foregoing results suggest that GO/PVA/Fe membrane is promising for Ca2+ and Mg2+ filtration and possess good potential for hardness removal in water treatment.
文章公開時間: 2018-07-16
Appears in Collections:環境工程學系所



Show full item record
TAIR Related Article

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.