請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/91617
標題: 以Fenton法及Photo-Fenton法降解含磺胺甲基噁唑之廢水
Degradation of Sulfamethoxazole waste water by Fenton and Photo-Fenton processes
作者: Pin-Chia Chiu
關鍵字: Photo-Fenton
Photo-Fenton oxidation process
Wastewater treatment
引用: 1.王德修、康世芳,1998,Photo-Fenton 分解硝基酚之研究,第 23 屆廢水處理技術研討會論文集,602-609。 2.申永順,1992,以紫外光卅過氧化氫程序處理含氯酚類有機溶液反應行為之研究,台灣科技大學碩士論文。 3.林正芳、林郁真、余宗賢,2008,新興污染物(抗生素與止痛藥)於特定污染源環境之流佈,持久性有機污染物(含戴奧辛)研討會。 4.徐子平,2001,鐵鹽種類對 Photo-Fenton 程序分解染料及脫色之研究,淡江大學碩士論文。 5.連建智,2010,利用光催化反應處理染整廢水之可行性研究,國立中興大學碩士論文。 6.傅家溱,2011,使用Fenton程序處理酸性染料(Eosin Yellow)之研究,國立中興大學碩士論文。 7.游非庸,2005,Photo-Fenton 相關程序氫氧自由基生成及分解染料之研究,淡江大學博士論文 8.蔡宏志,2005,Photo-Fenton 法處理反應性偶氮染料 Black B 與酚之研究,國立成功大學碩士論文。 9.蔡維馨,2011,紫外光/過氧化氫程序降解辛基苯酚聚氧乙烯醇水溶液之研究,國立中央大學碩士論文。 10.廖志祥、康世芳、柏雪翠,1998,Photo-Fenton 程序參數對氫氧自由基濃度之影響,第 23 屆廢水處理技術研討會論文集,543-541。 11.鄭佩珊,2011,應用電化學合成過氧化氫處理染料廢水(RB5)之研究,國立中興大學碩士論文。 12.賴秀美,2010,Electro-Fenton 處理水相氯酚類化合物之研究,國立中興大學碩士論文。 13.賴秀美,2010,Electro-Fenton 處理水相氯酚類化合物之研究,國立中興大學碩士論文。 14.鐘佳君,2006,UV/H2O2分解染料之動力學,大同大學碩士論文。 15.蘇益民,2009,影響 Fenton 法降解土壤中五氯酚之參數研究,朝陽科技大學碩士論文。 1. Alcock, R. E., Sweetman, A., and Jones, K. C., 1999. Assessment of organic contaminant fate in wastewater treatment plants selected compounds and physiochemical properties.Chemosphere, 38, 2247-2262. 2. Aleboyeh, A., Moussa, Y. and Aleboyeh, H. 2005. The effect of operational parameters on UV/H2O2 decolourisation of Acid Blue 74, Dyes and Pigments, 66, 129-134. 3. Feitz, A. J. *, Guan, J., Chattopadhyay, G., and Waite, T. D..2002. Photo-Fenton degradation of dichloromethane for gas phase treatment. Chemosphere,48,401–406. 4. Arnold, S. M., Hickey, W. J., and Harris, R. F. 1995. Degradation of atrazine by Fenton''s reagent Condition optimization and product quantification. Environmental Science & Technology, 29, 2083-2089. 5. Bossmann, S. H., Oliveros, E., Gob, S., Siegwart, S., Dahlen, E. P., Payawan, L., Straub, M., Worner, M., and Braun, A. M. 1998. New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemically enhanced Fenton reactions. The journal of Physical Chemistry. A, 102(28), 5542-5550. 6. Amorim, C. C. , Leao, M.D. , Moreira, F.P.M. , Fabris, J. D. , and Henriques, A. B..2013. Performance of blast furnace waste for azo dye degradation through photo-Fenton-like processes. Chemical Engineering Journal. 7. Chou, S., Huang, Y. H., Lee, S. N., Huang, G. H., and Huang, C., 1999. Treatment of high strength hexamine-containing waste water by electro-Fenton method. Water Research ,33, 751-759. 8. Elmorsi T. M., Riyad Y. M., Mohamed Z. H., Hassan M.H., and Bary A. E.2010. Decolorization of Mordant red 73 azo dye in water using H2O2/UV and photo-Fenton treatment. Journal of Hazardous Materials, 174, 352-358. 9. Elmund, G. K., Morrison, S. M., Grant, D.W., and Nevins, M. P., 1971. Role of excreted chlortetracycline in modifying the decomposition process in feedlot waste. Bulletin of Environmental Contamination and Toxicology, 6(2), 129-132. 10. Bandala, E. R.*, Martı’nez, D., Martı’nez, E., and Dionysiou, D. D.. 2004. Degradation of microcystin-LR toxin by Fenton and Photo-Fenton processes. Toxicon, 43,829–832. 11. Me’ndez-Arriaga, F. *, Esplugas, S., and Gime’nez, J..2010. Degradation of the emerging contaminant ibuprofen in water by photo-Fenton. Water Research,44,589–595. 12. Halling-Sorensen, B., 2001. Inhibition of aerobic growth and nitrification of bacteria in sewage sludge by antibacterial agents. Archives of Environmental Contamination and Toxicology, 40, 451-460. 13. Holtz, S., 2006. There is no “Away.” Pharmaceuticals, personal care products, and endocrine-disrupting substances: Emerging contaminants detected in water. Canadian institude for environmental law and policy. 14. Hsueh, C. L., Huang, Y. H., Wang, C. C., and Chen, C. Y. 2006. Photoassisted fenton degradation of nonbiodegradable azo-dye (Reactive Black 5) over a novel supported iron oxide catalyst at neutral pH. Journal of Molecular Catalysis. A, Chemical, 245, 78-86. 15. Feng , J., Hu , X., and Yue , P. L..2006. Effect of initial solution pH on the degradation of Orange II using clay-based Fe nanocomposites as heterogeneous photo-Fenton catalyst. Water Research,40,641– 646. 16. Kang, N., Lee, D.S., and Yoon, J., 2002. Kinetic modeling of Fenton oxidation of phenol and momochlorophenls. Chemosphere, 47, 915-924. 17. Kang, S. F., Liao, C. H., and Po, S. T. 2000. Decolorizing of textile wastewater by Photo-Fenton oxidation technology. Chemosphere, 41, 1287-1294. 18. Kavitha, V. and Palanivelu, K., 2004. The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol. Chemosphere 55, 1235. 19. Krutzler, T. and Bauer, R. 1999. Optimization of a photo-fenton prototype reactor. Chemophere, 38(11), 2517-2532. 20. Liao, C. H., Kang, S. F., and Wu, F. A. 2001. Hydroxyl radical scavenging role of Chloride and Bicarbonate ions in the UV/H2O2 process. Chemophere, 44, 1193-1200. 21. Lindsey, M. E. and Tarr, M. A. 2000. Quantitation of hydroxyl radical during Fenton oxidation following a single addition of iron and peroxide . Chemosphere , 41(3), 409-417. 22. Nu’n˜ez ,L. , Garcı’a-Hortal , J. A., and Torrades , F..2007. Study of kinetic parameters related to the decolourization and mineralization of reactive dyes from textile dyeing using Fenton and photo-Fenton processes. Dyes and Pigments,75,647-652. 23. Gonzalez-Bahamon , L. F., Mazille , F., Benitez , L. N., and Pulgarin, C..2011. Photo-Fenton degradation of resorcinol mediated by catalysts based on iron species supported on polymers. Journal of Photochemistry and Photobiology A: Chemistry, 217,201–206. 24. Lunar, L., Sicilia, D., Rubio, S., Perez-Bendito, D., and Nickel, U. 2000. Degradation of photographic developers by Fenton reagent: Condition optimization and kinetics for metol oxidation. Water Research, 34(6), 1791-1802. 25. Maletzky, P. and Bauer, R. 1998. The photo-fenton method-degradation of nitrogen containing organic compounds. Chemophere, 37(5), 899-909. 26. Tokumura , M., Znad , H. T., and Kawase, Y. *.2008. Decolorization of dark brown colored coffee effluent by solar photo-Fenton reaction: Effect of solar light dose on decolorization kinetics.Water Research, 42,4665–4673. 27. Mihaela, I. S., Aitlen, R. H., and James, R. B. 1996. Kinetics and mechanism of the degradation and mineralization of acetone in dilute aqueous solution sensitized by the UV photolysis of hydrogen peroxide. Environmental Science & Technology, 30, 2382-2390. 28. Tamimi ,M., Qourzal, S., Barka, N., Assabbane, A. ∗, and Ait-Ichou, Y..2008. Methomyl degradation in aqueous solutions by Fenton’s reagent and the photo-Fenton system. Separation and Purification Technology , 61 ,103–108. 29. Rozas , O., Contreras, D., Mondaca ,M. A., Perez-Moya, M., and Mansilla, H. D..2010. Experimental design of Fenton and photo-Fenton reactions for the treatment of ampicillin solutions. Journal of Hazardous Materials,177, 1025–1030. 30. Navarro , R. R., Ichikawa, H., and Tatsumi, K..2010. Ferrite formation from photo-Fenton treated wastewater. Chemosphere,80,404–409. 31. Tang, W. Z., and Huang, C. P. 1996. 2-4 Dichlorophenol oxidation kinetics by Fenton regant. Environmental Techology, 17, 1371-1378. 32. Walling, C. 1975. Fenton''s reagent revisited. Accounts of Chemical Research, 8(1), 121-131. 33. Wolfgang, G., Thomas, K., Andreas, G., Sixto, M., Julia, C., Rupert, B., and Fernandez, A. A. R. 2003. Photo-Fenton treatment of water containing natural phenolic pollutants. Chemophere, 50, 71-78. 34. Yang, M., Hu, J., and Ito, K., 1998. Characteristics of Fe2+/H2O2/UV oxidation process. Environmental Technology 119, 183-191. 35. Yue, P. L. 1993. Modelling of kinetics and reactors for water purification by photo-oxidation. Chemical Engineering Science, 48, 1-11. 36. Zheng, H., Pan, Y., and Xiang, X. 2007. Oxidation of acidic dye Eosin Y by the solar photo-Fenton processes. Journal of Hazardous Materials, 141, 457-464. 37. Zuo, Y. and Hoigne, J. 1992. Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron-(III)─oxalate complexes. Environmental Science & Technology, 26, 1014-1022. 38. Zuo, Y. and Hoigne, J. 1994. Photochemical decomposition of oxalic, glycoxalic and pyruvic acids catalysed by iron in atmospheric waters. Atmospheric Environment, 2, 1231-1239.
摘要: 高級氧化程序(Advanced oxidation processes, AOPs)是一種能夠產生高氧化力且非選擇性的氫氧自由基(Hydroxyl radical,.OH)的程序,利用氫氧自由基有效的降解水中各種有機物。本研究以磺胺甲基噁唑(Sulfamethoxazole , SMX)抗生素作為目標污染物,初始濃度為10mg/L,控制不同參數(H2O2濃度、Fe2+濃度、光強度等),利用四種氧化程序紫外光/過氧化氫(UV/H2O2)、亞鐵離子/過氧化氫(Fenton)、紫外光/亞鐵離子/過氧化氫(Photo-Fenton)、紫外光/亞鐵離子/過氧化氫/活性碳(Photo-Fenton/AC),對廢水中SMX以及化學需氧量(COD)去除,使其對環境危害降至最低。 研究結果顯示,Fenton 程序之最適操作條件為:pH = 3 、 [H2O2]/[Fe2+]莫耳比 = 10 ([H2O2]/[Fe2+] = 0.59/0.059 mM、[H2O2]/[SMX] 莫耳比 = 15)。Photo-Fenton 程序之最適操作條件為:光強度 = 90W、pH = 3、[H2O2]/[Fe2+]莫耳比 = 10 ([H2O2]/[Fe2+] = 0.59/0.059 mM、[H2O2]/[SMX] 莫耳比 = 15)。Photo-Fenton/AC程序之最適操作條件為:光強度 = 90W、pH = 3、[H2O2]/[Fe2+]莫耳比 = 10 ([H2O2]/[Fe2+] = 0.59/0.059 mM、[H2O2]/[SMX]莫耳比 = 15、[AC]=0.01 g/L)。以 UV/H2O2、Fenton、Photo-Fenton 、Photo-Fenton/AC四種程序之最佳條件處理120分鐘後,廢水中之 SMX 之去除率分別為15.2%、78.9%、82.4%、80.0%;COD 降解部分,其去除率為10%、44.4%、60%、66.7%。雖然Photo-Fenton的SMX去除率比Photo-Fenton/AC好,但是Photo-Fenton/AC有較好的COD去除率。
Advanced oxidation processes (AOPs) can produce strong oxidation ability, with non-specific hydroxyl radical (.OH), which can effectively decompose a variety of organic pollutants in the wastewater. The study pollutant initial concentration is 10 mg/L to target, and adjustment different parameter (H2O2 concentration, Fe2+ concentration, light intensity) to investigate the removal and chemical oxygen demand (COD) of Sulfamethoxazole(SMX) antibiotic by UV/H2O2, Fenton, Photo-Fenton and Photo-Fenton/AC systems. Hope that it will reduce environmental imparement. The optimum operating conditions for Fenton process in this study were as follows : pH = 3, [H2O2]/[Fe2+] molar ratio = 10 ([H2O2]/[Fe2+] = 0.59/0.059 mM, [H2O2]/[TX-100] molar ratio = 15); for Photo-Fenton process in this study was as follows : UV light intensity = 90 W, pH = 3, [H2O2]/[Fe2+] molar ratio = 10 ([H2O2]/[Fe2+] = 0.59/0.059 mM, [H2O2]/[TX-100] molar ratio = 15); for Photo-Fenton/AC process in this study was as follows : UV light intensity = 90 W, pH = 3, [H2O2]/[Fe2+] molar ratio = 10 ([H2O2]/[Fe2+] = 0.59/0.059 mM, [H2O2]/[TX-100] molar ratio = 15, [AC]=0.01g/L). The removal of SMX wastewater with UV/H2O2, Fenton, Photo-Fenton and Photo-Fenton/AC processes 120 minute were 15.2%, 78.9%, 82.4%, and 80.0% respectively. And COD removal rates were 10%, 44.4%, 60% , and 66.7% respectively. The SMX removal rate of Photo-Fenton is better than that of Photo-Fenton/AC; however, Photo-Fenton/AC has better COD removal rate than Photo-Fenton.
URI: http://hdl.handle.net/11455/91617
文章公開時間: 2017-07-14

檔案 描述 大小格式 
nchu-103-7101063032-1.pdf2.18 MBAdobe PDF檢視/開啟

在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。