Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91626
標題: 雙床變溫變壓吸附塔填充 13X 沸石捕獲汽油發電機尾氣二氧化碳之研究
CO2 Capture from Flue Gas of Gasoline Power Generator with 13X zeolite by a Dual-bed Temperature/Vacuum Swing Adsorption
作者: Jo-Yu Wu
吳若瑜
關鍵字: 3X 沸石
汽油發電機尾氣
二氧化碳捕獲
變溫/變壓雙塔系統
13X Zeolite
Flue gas of gasoline power generator
CO2 capture
Temperature/vacuum swing adsorption system
引用: 英文參考文獻: Aaron, D., Tsouris, C. (2005) Separation of CO2 from Flue Gas: A Review. Separation Science and Technology 40: 321-348. Agency, U.S.E.P. (2005) Exhaust Emission Effects of Fuel Sulfur and Oxygen on Gasoline Nonroad Engines. Alonso, L.E., Diamy, A., Legrand, J., Fraissard, J. (2004) Sorption of Volatile Organic Compounds on Zeolites with Microwave Irradiation. Studies in Surface Science and Catalysis 154: 1866-1871. Bai, H., Wei, J.H. (1996) The CO2 Mitigation Options for the Electric Sector: A Case Study of Taiwan. Energy Policy 24: 221-228. Bekkum, V.H., Flanigen, E.M., Jacobs, P.A., Jansen, J.C. (1991) Introduction to Zeolite Science and Practice. 2nd. Revised Edn., Elsevier, Amsterdam. Bezerra, D.P.O., R. S.; Vieira, R. S.; Cavalcante, C. L.; Azevedo, D. C. S. (2011) Adsorption of CO2 on Nitrogen-Enriched Activated Carbon and Zeolite 13x. Adsorption 17: 235-246. Breck, D.W. (1974) Zeolite Molecular Sieves: Structure, Chemistry and Use. London: John Wiley and Sons: 4. Breck, D.W. (1984) Zeolite Molecular Sieves. Robert E. Krieger Pub. Co., Malabar. Breck, D.W., Eversole, W. G., Milton, R. M., Reed, T. B., Thomas, T. L. (1956) Crystalline Zeolites. I. The Properties of a New Synthetic Zeolite, Type A. J. Am. Chem. Soc. 78: 5963-5971. Bredesen. R., J., K. and Bolland, O. (2004) High-Temperature Membranes in Power Generation with CO2 Capture. Chemical Engineering Processing 43: 1129-1158. Chang, A.C.C., Chuang, S. S. C., Gray, M., Soong, Y. (2003) In-Situ Infrared Study of CO2 Adsorption on Sba-15 Grafted with R-(Aminopropyl) Triethoxysilane. Energy Fuels 17. Chuang, C.L., Chiang, P. C., Chang, E. E. (2003) Modeling Vocs Adsorption onto Activated Carbon. Chemosphere 53: 17-27. De Coninck, H., Stephens, J. C., Metz, B. (2009) Global Learning on Carbon Capture and Storage: A Call for Strong International Cooperation on CCS Demonstration. Energy Policy 37: 2161-2165. Dwivedi, P., Gaur, V., Sharma, A. and Verma, N. (2004) Comparetive Study of Removal of Volatile Orgamic Compounds by Cryogenic Condensation and Adsorption by Activated Carbon Fiber. Separation and Purification Technology 39: 23-37. Figueroa, J.D., Fout, T., Plasynski, S., McIlvried, H. and Srivastava, R.D. (2008) Techno-Economic Study of CO2 Capture from Natural Gas Based Hydrogen Plants. International Journal of Greenhouse Gas Control 2: 9-20. Gao, W., Butler, D., Tomasko, D. L. (2004) Hight-Pressure Adsorption of CO2 on Nay Zeolite and Model Prediction of Adsorption Isotherm. Langmuir 77: 8083-8089. Garg, A., Shukla, P. R. (2009) Coal and Energy Security for India: Role of Carbon Dioxide (CO2) Capture and Storage (CCS). Energy 34: 1032-1041. Global Ccs Institute, (2012) Technology Options for CO2 Capture. Gottari, G., Sand, L. B., Mumpton, F. A. (1987) Mineralogy and Crystal Chemistry of Zeolite, in Natural Zeolites: Occurrence, Properties. Pergamon Press 45: 31-43. Granite, E.J.a.B., T. O. (2005) Review of Novel Methods for Carbon Dioxide Separartion from Flue and Fuel Gases. Fuel Processing Technology 86: 1423-1434. Gray, M.L.S., Y., Champagne, K. J., Pennline, H., Baltrus, J. P., Stevens, R. W., Khatri, R., Chuang, S. S., Filburn, T. (2005) Improved Immobilized Carbon Dioxide Capture Sorbents. Fuel Processing Technology 86: 1423-1434. Gupta, V. K., Srivastava, S. K., Tyagi, R. (2000) Design parameters for the treatment of phenolic wastes by carbon columns (obtained from fertilizer waste material). Water Research 34:1543-1550. Haag, W.O., Lago, R. M., Weisz, P. B. (1984) The Active Site of Acidic Aluminosilicate Catalysts. Nature 309: 589-591. Harlick, P.J.E., Tezel, F. H. (2004) An Experimental Adsorbent Screening Study for CO2 Removal from N2. Microporous Mesoporous Mater 76: 71-79. Ho, M.T., Allinson, G. W., Wiley, D. E. (2008) Reducing the Cost of CO2 Capture from Flue Gases Using Membrane Technology. Ind. Eng. Chem. Res. 47: 1562-1568. Inui, T.O., Y.; Yasuda, M. (1988) Relationship between Properties of Various Zeolites and Their CO2 Adsorption Behaviors in Pressure Swing Adsorption Operation Ind. Eng. Chem. Res. 27: 1103-1109. Intergovernmental Panel on Climate Change (IPCC)(2005)Special Report on Carbon Dioxide Capture and Storage. Integrated Gasification and Combined Cycle, (IGCC). José, A.C.S., Kristin, S. C., Alírio, E. R. (2012) Sorption and Kinetics of CO2 and CH4 in Binderless Beads of 13x Zeolite. Microporous and Mesoporous Materials 158: 219-228. Kim, K.J., Ahn, H. G. (2012) The Effect of Pore Structure of Zeolite on the Adsorption of VOCs and Their Desorption Properties by Microwave Heating. Microporous and Mesoporous Materials 152: 78-83. Kim, K.J., Kim, Y. H., Jeong. W. J., Park, N. C., Jeong, S. W., Ahn, H. G. (2007) Adsorption-Desorption Characteristics of Volatile Organic Compounds over Various Zeolites and Their Regeneration by Microwave Irradiation. Mesostructured Materials 165: 223-226. Knowles, G.P., Delaney, S. W. and Chaffee, A. L. (2006) (Dt) Diethylenetriamine-[Propyl(Silyl)]-Functionalized Chemistry Research 45: 2626-2633. Lee, J.B.R., C. K.; Baek, J. I.; Lee, J. H.; Eom, T. H.; Kim, S. H. (2008) Sodium-Based Dry Regenerable Sorbent for Carbon Dioxide Capture from Power Plant Flue Gas. Ind. Eng. Chem. Res 47: 4465-4472. Lee, Z.H., Lee, T. K., Bhatia, S., Mohamed, A. R. (2012) Post-Combustion Carbon Dioxide Capture: Evolution Towards Utilization of Nanomaterials. Renewable and Sustainable Energy Reviews 16: 2599-2609. Leyva-Ramos, R., Diaz-Flores, P.E., Leyva-Ramos, J. and Femat-Flores, R.A. (2007) Kinetic Modeling of Pentachlorophenol Adsorption from Aqueous Solution on Activated Carbon Fibers. Carbon 45: 2280-2289. Mesoporous Silicas as CO2 Adsorbents. Industrial & Engineering Lu, C., Bai, H., Su, F., Chen, W., Hwang, J. F., Lee, H. H. (2010) Adsorption of Co2 Dioxide from Gas Streams Via Mesoporous Spherical-Silica Particles. Journal of the Air and Waste Management Association 60: 1047-3289. Lu, C., Su, F., Hsu, S. C., Chen, W., Bai, H., Hwang, J. F., Lee, H. H. (2009) Thermodynamics and Regeneration of CO2 Adsorption on Mesoporous Spherical-Silica Particles. Fuel Processing Technology 90: 1543-1549. Nikolajsen, K., Kiwi-Minsker, L., Renken, A. (2006) Structured Fixed-Bed Adsorber Based on Zeolite-Sintered Metal Fibre for Low Concentration Voc Removal. Chemical Engineering Research and Design 84: 562-568. Nation Energy Technology Laboratory (NETL) (2007), Carbon Sequestration Technology Roadmap and Program Plan. Rao, A.B.a.R., E.S. (2002) A Technical, Economic, and Environmental Assessment of Amine-Based CO2 Capture Technology for Power Plant Greenhouse Gas Control. Environ. Sci. Technol. 36: 4467-4475. Romain, C., Georges, G., S, M., Cécile, V. (2013) Values of the Mass Transfer Coefficient of the Linear Driving Force Model for Voc Adsorption on Activated Carbons. Chemical Engineering Research and Design 91: 955-962. Ruthven, D.M. (1984) Principles of Adsorption and Adsorption Processes. John Wiley and Sons, Inc, New York. Ruthven, D.M., Shamsuzzaman, F. and Knaebel, K. S. (1994) Pressure Swing Adsorpion. John Wiley and Sons, Inc, New York. Sanpasertparnich, T., Idem, R., Bolea, I., deMontigny, D., Tontiwachwuthikul, P. (2010) Integration of Post-Combustion Capture and Storage into a Pulverized Coal-fired Power Plant. International Journal of Greenhouse Gas Control 4: 499-510. Sing, K.S.W., Everett, D. H., Haul,R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J., Siemieniewska, T. (1985) Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure and Applied Chemistry 57: 603-619. Skarstrom, C.W. (1960) Method and Apparatus for Fractionating Gaseous Mixtures by Adsorption. assigned to Esso Research and Engineering Company, Patent 2, 994,627, U.S. Su, F., Lu, C. (2012) Co2 Capture from Gas Stream by Zeolite 13x Using a Dual-Column Temperature/Vacuum Swing Adsorption. Energy & Environmental Science 5: 9021-9027. Su, F., Lu, C., Chung, A. J., Liao, C. H. (2014) Co2 Capture with Amine-Loaded 706-712. Wang, L., Liu, Z., Li, P., Yu, J., Rodrigues, A. E. (2012) Experimental and Modeling Investigation on Post-Combustion Carbon Dioxide Capture Using Zeolite 13x-Apg by Hybrid Vtsa Process. Chemical Engineering Journal: 151-161. Carbon Nanotubes Via a Dual-Column Temperature/Vacuum Swing Adsorption. Applied Energy 113: Yang, H., Xu, Z., Fan, M., Gupta, R., Slimane, R. B., Bland, A.e., Wright,L. (2008) Progress in Carbon Dioxide Separation and Capture: A Review. Journal of Environmental Sciences 20: 14-27. Yi, Z., Yanmei, S., Lu, B. (2012) Effect of Chemical Modification on Carbon Dioxide Adsorption Property of Mesoporous Silica. Journal of Colloid and Interface Science 379: 94-100. Yokoyama, T. (2004) Japanese R&D on Large-Scale CO2 Capture. ECI Conference on Separation Technology,Australia. Yoshida, K., Kuwaharab, T., Kurobib, T., Okubob, M. (2012) Diesel Nox Aftertreatment by Combined Process Using Temperature Swing Adsorption, NOx Reduction by Nonthermal Plasma, and NOx Recirculation: Improvement of the Recirculation Process. Journal of Hazardous Materials: 18-25. Yue, M.B., Yuan, C., Yi, C., Xin, D. and Zhu, J.H. (2006) CO2 Capture by as Prepared SBA-15 with an Occluded Organic Template. Advanced Functional Materials 16: 1717-1722. Zhang, J., Webley, P. (2008) Cycle Development and Design for Co2 Capture from Flue Gas by Vacuum Swing Adsorption Environ. Sci. Technol. 42: 563-569. Zukal, A.M., J.; Kubu, M. (2010) Adsorption of Carbon Dioxide on High-Silica Zeolites with Different Framework Topology. Top. Catal. 53: 1361-1366. 中文參考文獻: 吳榮宗 (1989) 工業觸媒概論. 國興出版社. 呂理平、呂維明、陳成慶 (1992) 單元操作. 新文京開發出版有限公司. 李建佑 (2007) 利用雙塔變壓吸附程序濃縮及回收氣化產氫製程中之二氧化碳與氫氣. 碩士論文,國立中央大學化學工程與材料研究所,桃園. 林俊佑 (2010) 利用變壓吸附程序濃縮氣化合成氣之氫氣及捕獲二 氧化碳之模擬. 碩士論文,國立中央大學化學工程與材料工程學系,桃園. 陳君豪 (2001) 利用真空變壓吸附法濃縮及回收二氧化碳. 碩士論文,國立中央大學化學工程研究所,桃園. 黃裕銘 (2003) 混合醇胺 amp/Mdea 水溶液吸收二氧化碳反應動力學數據量測研究. 碩士論文,中原大學化學工程學系,桃園. 楊家寶 (2004) 混合醇胺 tea+Pz 水溶液吸收二氧化碳反應動力學數據量測研究. 碩士論文,中原大學化學工程學系,桃園. 經濟部工業局工業污染防治技術手冊 (1994) 有機溶劑污染控制. 10. 蔡政鴻, 陳惠芬 (2008) 沸石-礦物界的環保明星. 台灣博物館年刊:74-77. 顏秀慧 (1998) 沸石對揮發性有機物吸附行為之研究. 博士論文,國立台灣大學環境工程研究所,台北. 蘇峰生 (2011) 低溫二氧化碳吸附劑篩選之研究. 博士論文,國立中興大學環境工程學系,台中.
摘要: 本研究選用市售桿狀及球狀13X沸石做為吸附劑,利用雙塔變溫變壓吸附系統(Dual-bedTemperature/VacuumSwingAdsorptionSystem)捕獲鋼瓶合成氣體與發電機尾氣之CO2雙床設備的吸附塔是由兩個圓柱管所構成。,包含內層與外層,於外層通入蒸汽或冷凝水,進行內層管柱升溫或降溫之溫度控制。本研究主要分為兩個部分: 第一部分為吸附劑之篩選,結果顯示球狀13X以雙床變溫變壓系統於吸附環境30℃、含水率<4vol%、CO2進流濃度為15%之氣流下,有最高工作吸附量(qw)135.8mg/g。 第二部分為鋼瓶合成氣體與發電機尾氣於雙塔系統進行CO2捕獲研究。鋼瓶合成氣體條件設定為流量每分鐘10升、CO2濃度15%。發電機尾氣則先進入前處理系統(pretreatment)以去除揮發性有機污染物、水、油氣及微粒,接著進入雙塔進行吸脫附,氣體條件設定為流量每分鐘10升、、CO2濃度11.8±0.3%VOCs濃度1500-4500ppmv-CH4及SO2濃度<1ppmv。鋼瓶合成氣體與發電機尾氣吸/脫附條件皆相同,吸附溫度30℃,脫附溫度100℃、真空壓0.6bar、脫附時間20分鐘之環境進行50次循環吸脫附試驗,實驗結果顯示:鋼瓶合成氣體試程之工作吸附量(qw)平均值為85.1mg/g、吸附指標(AI)平均值為92.4%、CO2去除率(Re)平均值為99.6%;發電機尾氣試程之qw平均值為74.5mg/g、AI平均值為75.1%、Re平均值為99.1%。 由上述結果得知,利用球狀13X沸石進行雙塔吸附結合VSA/TSA脫附試程進行汽油發電機尾氣CO2捕獲是可行的技術。
Commercially available spherical 13X zeolite was employed as sorbents for CO2 capture from synthetic gas of cylinder and flue gas of gasoline power generator by a dual-bed temperature/vacuum swing adsorption system. Each column of dual-bed system consisted of cylindrical shell and inner column which was designed to pass through the steam fluid or the cooling water to increase or decrease the temperature of the inner column. The research included two parts as follows: The first part was the selection of the optimum sorbent to capture carbon dioxide. The adsorption process was conducted at 30°C, <4 vol% water content and 15% CO2. The results showed that the maximum adsorption working capacity (qw) was 135.8 mg/g. The second part was CO2 capture from synthetic gas of cylinder and flue gas of gasoliner power generator. The condition of synthetic gas was controlled at 10 LPM (liter per minute) with 15% CO2. The flue gas was first introduced into a pretreatment system to remove volatile organic compounds (VOCs), water, oil gas and particles, and then was delivered into a dual-bed adsorption/desorption system, in which the system flow rate was controlled at 10 LPM with a flue gas containing 11.8±0.3% CO2, 1500-4500 ppmv-CH4 VOCs and<1 ppmv SO2. The adsorption process was conducted at 30°C while the desorption process was conducted at 100°C, 0.6 bar and 20 min. The results indicated that after 50 cycles, the average qw, the AI (adsorption index) and the CO2 removal efficiency (RE) respectively reached 85.1 mg/g, 92.4% and 99.6% with synthetic gas and 74.5 mg/g, 75.1% and 99.1% with flue gas. This reveals that the 13X zeolite with dual-bed temperature/vacuum swing system has feasibility on CO2 capture from flue gas of gasoline power generator.
URI: http://hdl.handle.net/11455/91626
文章公開時間: 2018-07-15
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.