Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91634
標題: 利用 Ni-Fe 觸媒增加廢塑膠氣化產碳之效率
Enhancing carbon production by Ni-Fe catalyst during waste plastic gasification
作者: Chun-Wei Cheng
鄭雋威
關鍵字: 廢塑膠
氣化
流體化床
觸媒
產碳
plastic wastes
gasification
fluidized bed reactor
catalysts
carbon production
引用: 行政院環境保護署. (2013). 廢物品及容器稽核認證回收量統計表. From http://210.69.101.110/epa/stmain.jsp?sys=100 行政院環境保護署. (2012). 應回收廢棄物回收清除處理稽核認證作業手冊(廢塑膠容器類). 吳耿東, 李宏台. (2004). 化腐朽為能源. 科學發展, 第 383 期, 20-27. 吳耿東, 楊凱成, 胡博誠. (2011). 流體化床氣化技術. 化工技術, 第十九卷(第八期), 126-136. 吳照雄. (1995). 熱裂解技術在廢棄物處理上的應用. 化工技術, 第三卷(第六期), 149-154. 呂錫民. (2009). 氣化技術. 科學發展, 第 435 期, 62-65. 李定粵. (1991). 觸媒的原理與應用. 正中出版社. 林呈彥. (2013). 利用床質添加劑增進生質物氣化產氫之研究. 環境工程學系所, 國立中興大學, 碩士論文. 郭修伯, 吳俊德. (2007). 流體化床技術在新興產業之應用與發展. 化工技術, 第五十四卷(第五期), 21-28. 陳全祿. (1993). 以鉑觸媒焚化處理揮發性有機物反應動力之研究. 環境工程學研究所, 國立中山大學, 碩士論文 陳欣宜. (2011). 觸媒氣化生質物產氫之研究. 環境工程學系所, 國立中興大學, 碩士論文. 陳緯政. (2011). 床質添加劑影響流體化床生質產氫之研究. 環境工程學系所, 國立中興大學, 碩士論文. 經濟部能源局.(2012). 能源產業技術白皮書.From http://web3.moeaboe.gov.tw/ECW/populace/home/Home.aspx 鄭武順, 邱淑哲, 程桂祥. (2001). 觸媒在塑膠裂解資源化處理上的應用.化工技術, 第九卷(第六期), 247-260. 錢建嵩. (2011). 流體化床與流體化床反應器. 化工技術, 第十九卷(第八期), 60-69. 錢建嵩, 黃正忠, 楊玉樹, 歐建志, 張瑞顯, 吳耿東, 游逸將. (1992). 流體化床技術: 高立圖書有限公司. Arena, U., Mastellone, M. L., Camino, G., and Boccaleri, E. (2006). An innovative process for mass production of multi-wall carbon nanotubes by means of low-cost pyrolysis of polyolefins. Polymer Degradation and Stability, 91(4), 763-768. Armor, J. N. (1998). Applications of catalytic inorganic membrane reactors to refinery products. Journal of Membrane Science, 147, 217-233. Basha, S. A., and Raja Gopal, K. (2012). A review of the effects of catalyst and additive on biodiesel production, performance, combustion and emission characteristics. Renewable and Sustainable Energy Reviews, 16(1), 711-717. Basu, P. (2006). Combustion and Gasification in Fluidized Beds. Taylor & Francis Group. Bazargan, A., and McKay, G. (2012). A review – Synthesis of carbon nanotubes from plastic wastes. Chemical Engineering Journal, 195-196, 377-391. Chen, C.-S., Lin, J.-H., Wu, J.-H., and Chiang, C.-Y. (2009). Growth of carbon nanofibers synthesized from CO2 hydrogenation on a K/Ni/Al2O3 catalyst. Catalysis Communications, 11(3), 220-224. Chen, X., He, J., and Wang, H. (2008). Synthesis of carbon nanotubes and nanospheres with controlled morphology using different catalyst precursors. Nanotechnology, 19(32), 325607. Chen, X., He, J., Ya, C., and Tang, H. (2006). Novel in situ fabrication of chestnut-like carbon nanotube spheres from polypropylene and nickel formate. The Journal Of Physical Chemistry B, 110, 21684-21689. Chernozatonskii, L. A., Kukovitskii, E. F., Musatov, A. L., Ormont, A. B., Izraeliats, K. R., and L''vov, S. G. (1998). Carbon crooked nanotube layers of polyethylene synthesis, structure and electron emission. Carbon, 36, 713-715. Chu, W., and Windawi, H. (1996). Control VOC via Catalytic Oxidation. Chemical Engineering Progress, 37-43. Chung, Y.-H., and Jou, S. (2005). Carbon nanotubes from catalytic pyrolysis of polypropylene. Materials Chemistry and Physics, 92(1), 256-259. Hou, Y., Xu, Z., and Sun, S. (2007). Controlled Synthesis and Chemical Conversions of FeO Nanoparticles. Angewandte Chemie International Edition, 46, 6329-6332. Kersten, S. R. A., Prins, W., Drift, B. v. d., and Swaaij, W. P. M. v. (2003). Principles of a novel multistage circulating fluidized bed reactor for biomass gasification. Chemical Engineering Science, 58(3-6), 725-731. Kiselev, N. A., Sloan, J., Zakharov, D. N., Kukovitskii, E. F., Hutchison, J. L., Hammer, J., and Kotosonov, A. S. (1998). Carbon nanotubes from polyethylene precursors Structure and structural changes caused by thermal and chemical treatment revealed by HREM. Carbon, 36, 1149-1157. Knoef, H. A. M. (2005). Handbook Biomass Gasification. Biomass Technology Group. Kukovitskii, E. F., Chernozatonskii, L. A., L''Vov, S. G., and Mel''nik, N. N. (1997). Carbon nanotubes of polyethylene. Chemical Physics Letters, 266, 323-328. Kukovitsky, E. F., L''vov, S. G., Sainov, N. A., Shustov, V. A., and Chernozatonskii, L. A. (2002). Correlation between metal catalyst particle size and carbon nanotube growth. Chemical Physics Letters, 355, 497-503. Kung, H. H., and Ko, E. I. (1996). Preparation of oxide catalysts and catalyst supports — a review of recent advances. The Chemical Engineering Journal and the Biochemical Engineering Journal, 64(2), 203-214. Li, H., Shi, C., Du, X., He, C., Li, J., and Zhao, N. (2008). The influences of synthesis temperature and Ni catalyst on the growth of carbon nanotubes by chemical vapor deposition. Materials Letters, 62(10–11), 1472-1475. Liu, J., Jiang, Z., Yu, H., and Tang, T. (2011). Catalytic pyrolysis of polypropylene to synthesize carbon nanotubes and hydrogen through a two- stage process. Polymer Degradation and Stability, 96(10), 1711-1719. Liu, J., Jiang, Z., Yu, H., and Tang, T. (2009). Production of hydrogen and carbon nanotubes by catalytic pyrolysis of waste polypropylene in a two-step process. in:Proceedings of the 5th International Symposium on Feedstock and Mechanical Recycling of Polymeric Materials, 118-122. Maiya, P. S., Anderson, T. J., Mieville, R. L., Dusek, J. T., Picciolo, J. J., and Balachandran, U. (2000). Maximizing H2 production by combined partial oxidation of CH4 and water gas shift reaction. Applied Catalysis A: General, 196(1), 65-72. Maksimova, N. I., Krivoruchko, O. P., Chuvilin, A. L., and Plyasova, L. M. (1999). Preparation of nanoscale thin-walled carbon tubules from a polyethylene precursor. Carbon, 37, 1657-1661. Mishra, N., Das, G., Ansaldo, A., Genovese, A., Malerba, M., Povia, M., Ricci, D., Di Fabrizio, E., Di Zitti, E., Sharon, M., and Sharon, M. (2012). Pyrolysis of waste polypropylene for the synthesis of carbon nanotubes. Journal of Analytical and Applied Pyrolysis, 94, 91-98. Nuernberg, G. D. B., Foletto, E. L., Campos, C. E. M., Fajardo, H. V., Carreño, N. L. V., and Probst, L. F. D. (2012). Direct decomposition of methane over Ni catalyst supported in magnesium aluminate. Journal of Power Sources, 208, 409-414. O.Levenspiel. (1998). Chemical Reactions Engineering (3 ed.). John Wiley & Sons. Pérez-Cabero, M., Rodrı́guez-Ramos, I., and Guerrero-Ruı́z, A. (2003). Characterization of carbon nanotubes and carbon nanofibers prepared by catalytic decomposition of acetylene in a fluidized bed reactor. Journal of Catalysis, 215(2), 305-316. Ponzio, A., Kalisz, S., and Blasiak, W. (2006). Effect of operating conditions on tar and gas composition in high temperature air/steam gasification (HTAG) of plastic containing waste. Fuel Processing Technology, 87(3), 223-233. Pol, V. G., and Thiyagarajan, P. (2010). Remediating plastic waste into carbon nanotubes. Journal of Environmental Monitoring, 12(2), 455-459. Song, R., and Ji, Q. (2011). Synthesis of Carbon Nanotubes from Polypropylene in the Presence of Ni/Mo/MgO Catalysts via Combustion. Chemistry Letters, 40(10), 1110-1112. Song, R., Li, B., Zhao, S., and Li, L. (2009). Transferring polypropylene into carbon nanotubes via combustion of PP/zeolites (H-ZSM-5 or H-beta)/Ni2O3. Journal of Applied Polymer Science, 112(6), 3423-3428. Takenaka, S., Kobayashi, S., Ogihara, H., and Otsuka, K. (2003). Ni/SiO2 catalyst effective for methane decomposition into hydrogen and carbon nanofiber. Journal of Catalysis, 217(1), 79-87. Tanksale, A., Beltramini, J. N., and Lu, G. M. (2010). A review of catalytic hydrogen production processes from biomass. Renewable and Sustainable Energy Reviews, 14(1), 166-182. Venegoni, D., Serp, P., Feurer, R., Kihn, Y., Vahlas, C., and Kalck, P. (2002). Parametric study for the growth of carbon nanotubes by catalytic chemical vapor deposition in a fluidized bed reactor. Carbon, 40(10), 1799-1807. Yang, Z., Zhang, Q., Luo, G., Huang, J.-Q., Zhao, M.-Q., and Wei, F. (2010). Coupled process of plastics pyrolysis and chemical vapor deposition for controllable synthesis of vertically aligned carbon nanotube arrays. Applied Physics A, 100(2), 533-540. Yen, Y.-W., Huang, M.-D., and Lin, F.-J. (2008). Synthesize carbon nanotubes by a novel method using chemical vapor deposition-fluidized bed reactor from solid-stated polymers. Diamond and Related Materials, 17(4-5), 567-570. Zhang, J., Li, J., Cao, J., and Qian, Y. (2008). Synthesis and characterization of larger diameter carbon nanotubes from catalytic pyrolysis of polypropylene. Materials Letters, 62(12-13), 1839-1842. Zhuo, C., Hall, B., Richter, H., and Levendis, Y. (2010). Synthesis of carbon nanotubes by sequential pyrolysis and combustion of polyethylene. Carbon, 48(14), 4024-4034.
摘要: 隨著社會的發展,人們為了生活的便利而製造出大量的塑膠製品,也因其塑膠的不易分解的特性,導致後續處理問題相繼衍生而來。為了能有效的將廢塑膠減量及資源化處理,本研究使用流體化床反應器氣化廢塑膠,並藉由觸媒的添加增加廢塑膠氣化產碳之效率。 於流體化床添加不同觸媒對廢塑膠產碳之影響,結果顯示 Ni、Fe 活性相之觸媒皆能於反應中促使碳的合成。XRD 之結果顯示廢塑膠氣化反應後之觸媒,其主要之繞射峰(2θ=26.5°)為碳之特徵峰。其中以 Al2O3 為擔體之觸媒中,以 Fe/Al2O3 較有利合成碳,而改質石英砂之觸媒,則以Fe/SiO2 較有助於碳的合成,其含浸量又以 3 wt.%之 Fe/SiO2 為較佳,產碳量為 31.3 g/100g PP。此外,Ni/Al2O3 觸媒因具有較佳的分散性及較大的比表面積,較有助於產氫,當含浸量為 10 wt.%時,氣體組成約有 18 mole% (N2-free)的 H2。綜合本實驗之結果,本研究以含浸法製備之觸媒能催化廢塑膠氣化產碳,於床質中添加少量的 Fe 觸媒即能有效達到合成碳的效果。
With the development of society, people create a lot of plastic products for life convenience. In addition, plastics are not easily decomposed which resulted the problem of plastic wastes treatments. In order to reduce and recycle plastic wastes effectively, this study use bed-additives to catalyze the gasification of plastic wastes to form carbon materials in a fluidized bed reactor. The efficiencies of plastic wastes gasification at 500°C with different bed- additives were evaluated. The results indicated that both Ni and Fe catalysts could enhance the ability of carbon production in the gasification system. The XRD results showed that the main diffraction peak (2θ=26.5°) of reacted catalyst was carbon. When using Al2O3 as support, Fe/Al2O3 had higher capacity for carbon production than Ni/Al2O3. For SiO2 catalysts, 3 wt.% Fe/SiO2 had the highest activity than other SiO2 catalysts in this study. Besides, Ni/Al2O3 significantly enhance hydrogen production ability due to better metal dispersion and higher specific surface area. In conclusion, adding small amount bed-additives which prepared by impregnation method could promote the ability of carbon production during plastic wastes gasification.
URI: http://hdl.handle.net/11455/91634
文章公開時間: 2018-07-15
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.