請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/91638
標題: 以光芬頓程序處理抗生素氯四環素廢水之研究
Treatment of antibiotic Chlortetracycline in wastewater by photo-Fenton process
作者: Wei-Che Kao
高偉哲
關鍵字: photo-Fenton程序
抗生素
氯四環素
高級氧化處理程序
廢水處理
Advanced oxidation process
antibiotics
chlortetracycline
photo-Fenton process
wastewater treatment
引用: 中文部分 (1)圖書 石濤著,環境化學,鼎茂圖書出版股份有限公司,p.3-23~23-25,2009。 施英隆著,環境化學,五南圖書出版股份有限公司,p.521,2013。 (2)期刊論文 王根樹、蔡詩偉、陳家揚、羅子寧、謝淑婷、陳慧雯,飲用水水源與水質中新興污染物對人體健康風險評估之研究計畫(EPA-101-U1J1-02-101),2012。 林正芳、林郁真、余宗賢,新興污染物(抗生素與止痛藥)於特定污染源環境之流佈,持久性有機污染物(含戴奧辛)研討會,2008。 陳嘉惠、陳櫻丹、林亭儀、李俊璋,環境健康風險季刊(第二季),第三章,2010。 林郁貞,污水再生利用技術研究環境新興污染物流布調查及評估,經濟部水利署水利規劃試驗所,2008。 林正芳,「特定污染源廢(污)水中新興污染物管制研究專案計畫」,行政院環保署,2008。 李俊璋:風險評估。郭育良等編著:職業病概論。第三版(第22章)。臺北:華杏出版社,2007年。 顧洋,以紫外線/氧化劑程序分解水中氯酚類成分之研究,行政院國家科學委員會專題研究計畫成果報告,國立臺灣科技大學化學工程系,1993。 申永順、顧洋,以高級氧化程序處理空氣中揮發性有機污染物之研究與應用,經濟工業局84年度VCO管制與處理技術講習會,第27-53頁,1995。 顧洋,高級氧化程序在廢水處理上的應用,工業防治污染手冊,經濟部工業局,1993。 黃泰棋,水溶液中溶解氣體與金屬離子對超音波生解2-氯酚之影響,碩士論文,國立臺灣科技大學化學工程研究所,臺北,2002。 曾士軒,臭氧在水處理的應用,國立臺北科技大學專題研究報告,臺北。 王德修,Fenton相關程序處理硝基酚類化合物之研究,博士論文,私立淡江大學水資源及環境工程研究所,臺北,1999。 馬英石,超音波程序應用於鄰氯酚以及腐植酸處理之研究,博士論文,國立交通大學環境工程系博士班,1998。 申永順,以高級氧化程序處理揮發性有機污染物反應行為及光反應器設計之研究,博士論文,國立臺灣科技大學化學工程研究所,臺北,1998。 姜欣伶,以光芬頓程序處理含有界面活性劑(Triton X-100)廢水之研究,碩士論文,國立中興大學環境工程研究所,2012。 邱品嘉,活性碳吸附擬非勻相Photo-Fenton法降解新興污染物SMX廢水,碩士論文,國立中興大學環境工程研究所,2014。 王輝、姚宏、田盛、馬友千、于曉華,不同環境條件下Fe3+對金黴素降解機制的影響,北京工業大學學報,2013。 (3)網路資源 美國地質調查所(U.S. Geological Survey;USGS),http://toxics.usgs.gov。 美國環保署,http://www.epa.gov。 歐盟EUGRIS(土壤與地下水管理資訊系統),http://www.eugris.info/index.asp。 聯合國環境規劃署2009年鑑, http;//www.unep.org/geo/yearbook/yb2009/PDF/2-HSHW_UNEP_YearBook_09_low.pdf。 美國環保署之藥物和個人保健用品,http://www.epa.gov/ppcp/basic2.html。 (4)其他 特定污染源廢(污)水中新興污染物管制研究專案計畫,行政院環保署九十六年委託計畫(EPA-96-G106-02-237)。 經濟部水利署水利規劃試驗所,汙水-再生利用技術研究環境新興污染物水佈調查及評估,2008。 水質保護處,事業放流水中特殊污染物排放情形及管理策略,2009。 行政院環境保護署環境檢驗所,水中醫藥類及其他代謝之殘留化學物質之檢測技術之建立(2/4),期末報告,2008。 西文部分 Aceituno, M., Stalikas, C. D., Lunar, L., Rubio, S. and Pérez-Bendito, D., 2002. Photocatalytic oxidation of metol, identification of intermediates and reaction path ways, Water Research, 36, 3582-3592. Boreen, A. L., Arnold, W. A. and McNeill, K., 2003. Photodegradation of pharmaceuticals in the aquatic environment: A review, Aquatic Science, 65, 320-341. Boreen, A. L., Arnold, W. A. and McNeill, K., 2004. Photochemical fate of sulfa drugs in the aquatic environment: Sulfa drugs containing five-membered heterocyclic groups, Environmental Science and Technology, 38, 3933-3940. Cardoza, L. A., Knapp, C. W., Larive, C. K., Belden, J. B., Lydy, M. and Graham, D. W., 2005. Factors affecting the fate of ciprofloxacin in aquatic field system, Water, Air, and Soil Pollution, 161, 383-398. Clark, J. H., 1996. Chemistry of waste minimization, 246-327. Daughton, C. G. and Jones-Lepp, T. L., 2001. Pharmaceuticals and personal care products in the environment: scientific and regulatory issues. American Chemical Society. Washington, D.C.. Doede, C. M. and Walker, C. A., 1955. Photochemical Engineering, Chemical Engineering, 32, 63 and 159-178. Feng, J., Hu, X. and Yue, P. L., 2006. Effect of initial solution pH on the degradation of Orange II using clay-based Fe nanocomposites as heterogeneous photo-Fenton catalyst, Water Research, 40, 641-646. Fujihira, M., Satoh, Y. and Osa, T., 1982. Heterogeneous photocatalytic reaction on semiconductor material, III, effect of pH and Cu2+ ions on the photo-Fenton type reaction, Bulletin of the Chemical Society of Japan, 55(3), 666-671. Gu, C. and Karthikeyan, K.G., 2005. Sorption of the antimicrobial ciprofloxacin to aluminum and iron hydrous oxides, Environmental Science and Technology, 39, 9166-9173. Ho, P. C., 1986. Photooxidation of 2,4-Dinitrotoluene in Aqueous Solution in the Presence of Hydrogen Peroxide, Environmental Science and Technology, 20, 260. Huang, C. H., Renew, J. E., Smeby, L. K., Pinkston, K. and Sedlak, D. L., 2001. Assessment of potential antibiotic contaminants in water and preliminary occurrence analysis, Journal of Contemporary Water Research and Education, 120, 30-40. Huber, M. M., Gobel, A., Joss, A., Hermann, N., Loffler, D., McArdell, C. S., Ried, A., Siegrist, H., Ternes, T. A. and Von Gunten, U., 2005. Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: a pilot study, Environmental Science and Technology, 39, 4290-4299. Junker, T., Alexy, R., Knacker, T. and Kummerer, K., 2006. Biodegradability of C-labeled antibiotics in a modified laboratory scale sewage treatment plant at environmentally relevant concentrations, Environmental Science and Technology, 40, 318-324. Kim, S., Eichhorn, P., Jensen, J. N., Weber, A. S. and Aga, D. S., 2005. Removal of antibiotics in wastewater: effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process, Environmental Science and Technology, 39(15), 5816-5823. Ku, Y. and Ho, S.C., 1990. The Effect of Oxidants on UV Destruction of Chlorophenols, Environmental Progress, 9(4), 218. Lam, M. W., Tantuco, K. and Mabury, S. A., 2003. PhotoFate : a new approach in accounting for the contribution of indirect photolysis of pesticides and pharmaceuticals in surface waters, Environmental Science and Technology, 37, 899-907. Lam, M. W., Young, C. J. and Mabury, S. A., 2005. Aqueous photochemical reaction kinetics and transformations of fluoxetine, Environmental Science and Technology, 39, 513-522. Legrini, O., Oliveros, E. and Braun, A. M., 1993. Photochemical processses for water treatment, Chemical Reviews, 93(2), 671-698. Leng, W. H., Liu, H., Cheng, S. A. and Zhang, J. Q., 2000. Kinetics of photocatalytic degradation of aniline in water over TiO2 supported on porous nickle, Journal of Photochemistry and Photobiology A:Chemistry, 131, 125-132. Lindberg, R. H., Olofsson, U., Rendahl, P., Johansson, M. I., Tysklind, M. and Andersson, B. A. V., 2006. Behavior of fluoroquinolones and trimethoprim during mechanical, chemical, and active sludge treatment of sewage water and digestion of sludge, Environmental Science and Technology, 40, 1042-1048. Lunestad, B. T., Samuelsen, O. B., Fjelde, S. and Ervik, A., 1995. Photostability of eight antibacterial agents in seawater, Aquaculture, 134(3-4), 217-225. Marechal, A. M., Slokar, Y. M. and Taufer, T., 1997. Decoloration of chlorotriazine reactive azo dyes with H2O2/UV, Dyes and Pigments, 33(4), 180A-185A. Matamoros, V., Garcia J. and Bayona, J. M., 2005. Behavior of selected pharmaceuticals in subsurface flow constructed wetlands: A pilot-scale study, Environmental Science and Technology, 39, 5449-5454. Matamoros, V. and Bayona, J. M., 2006. Elimination of pharmaceuticals and personal care products in subsurface flow constructed wetlands, Environmental Science and Technology, 40, 5811-5816. Millero, F. J., LeFerriere, A., Fernandez, M., Hubinger, S. and Hershey, J. P., 1989. Oxidation of HS with HO in natural waters, Environmental Science and Technology, 23(2), 209. NilsunInce, H., 1999. Critical effect of hydrogen peroxide in photochemical dye degradation, Water Research, 33(4), 1080-1084. Ogata, Y., Tomizawa, K. and Takagi, K., 1981. Photo-oxidation of Formic, Acetic and Propionic Acids with Aqueous Hydrogen Peroxide, Canadian Journal of Chemistry, 59(1), 14. Ollis, D. F., 1991. Comparative Aspects of Advance Oxidation Processes, Emerging Technologies in Hazardous Waste Management III, 2, 18-34. Prengle, H. W. Jr. and Mauk, C. E., 1978. New Technology: ozone/UV Chemical oxidation Wastewater process for Metal Complexes, Organic Species and disinfection, the American Institute of Chemical Engineers Symposium Series, 74, 228-249. Qiang, Z., Macauley, J. J., Mormile, M. R., Surampalli, R. and Adams, C. D., 2006. Treatment of antibiotics and antibiotic resistant bacteria in swine wastewater with free chlorine. Agricultural Food Chemical, 54, 8144-8154. Rodriguez, M., Kirchner, A., Contreras, S., Chamarro, E. and Esplugas, S., 2000. Influence of H2O2 and Fe(III) in the photodegradation of nitrobenxene, Journal of Photochemistry and Photobiology A: Chemistry, 133, 123-127. Roger, B., Herbert, J. R., Maria, M., Gustav, E., Ursula, S., Embaie, F. and Matthias, F., 2005. Quantification of abiotic reaction rates in mine tailings: evaluation of treatment methods for eliminating iron- and sulfur-oxidizing bacteria, Environmental Science and Technology, 39, 770-777. Schulte, P., Bayer, A., Kuhn, F., Luy, T. and Volkmer, M., 1995. H2O2/O2, H2O2/UV and H2O2/Fe2+ processes for the oxidation of hazardous wastes, Ozone Science and Engineering, 17, 119–134. Serpone, N. and Pelizzetti, E., 1989. Photocatalysis, Fundamentals and Applications. Wiley. New York. Stepnowski, P., 2002. Enhanced photo-degradation of contaminants in petroleum refinery waster, Water Research, 36, 2167-2172. Sundstrom, D. W., Klei, H. E., Nalette, T. A., Reidy, D. J. and Weir, B. A., 1986. Destruction of Halogenated Aliphatics by Ultraviolet Catalyzed Oxidation with Hydrogen Peroxide, Hazardous Waste and Hazardous Materials, 3(2), 101. Sundstrom, D. W., Weir, B. A. and Klei, H. E., 1989. Destruction of Aromatic Pollutants by UV light Catalyzed Oxidation with Hydrogen Peroxide, Environmental Progress, 8(1), 6-11. Tamimi, M., Qourzal, S., Barka, N., Assabbane, A. and Ait-Ichou, Y., 2008. Methomyl degradation in aqueous solutions by Fenton’s reagent and the photo-Fenton system, Separation and Purification Technology, 103-108. Ternes, A. T., Joes, A. and Siegrist, H., 2004. Scrutinizing pharmaceutical and personal care products in wastewater treatment, Enviromental Science and Technology, 38, 393-399. Werner, J. J., Arnold, W. A. and McNeill, K., 2006. Water hardness as a photochemical parameter: tetracycline photolysis as a function of calcium concentration, magnesium concentration, and pH, Environmental Science and Technology, 40, 7236-7241. Yue, P. L. and Legrini, O., 1989. Photochemical Degradation of Trace Organics in Water, Environmental Progress, 8(2), 18. Zepp, R. G., 1988. Factors affecting the photochemical treatment of hazarodous waste, Environmental Science and Technology, 22(3), 256-257. Zhang, H. and Huang, C.H., 2007. Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite, Chemosphere, 66(8), 1502-1512.
摘要: 近年來,新興污染物因為其影響力和威脅性而開始被人們所關注,高級氧化處理程序 AOPs 可以有效的產生強氧化力且非選擇性的氫氧自由基 ‧OH 以降解污染物,所以被廣泛的使用在處理有機污染物上。 本研究以抗生素氯四環素(Chlortetracycline, CTC)作為目標污染物,藉由改變不同參數(過氧化氫濃度、亞鐵離子濃度、紫外光強度),並利用高級氧化處理程序的 UV/H2O2 程序(紫外光/過氧化氫)、Fenton 程序(過氧化氫/亞鐵離子)、photo-Fenton 程序(紫外光/過氧化氫/亞鐵離子)等方法來對廢水中的 CTC 及化學需氧量 COD 降解,並且探討各種程序之間的影響及差異。 實驗結果顯示,當污染物 CTC 的濃度為10 mg/L 時,UV/H2O2 程序中最佳處理條件為[H2O2] = 1.97 mM、光強度 = 90 W、pH = 3,去除率有72.3 % ;Fenton 程序的最佳處理條件為[H2O2] = 1.18 mM、[Fe2+] = 0.059 mM、光強度 = 90W、pH = 3去除率,有85.4 %;photo-Fenton程序的最佳處理條件為[H2O2] = 1.97 mM、[Fe2+] = 0.059 mM、光強度 = 90W、pH = 3,去除率有96.8%,而在三種程序當中,無論是污染物CTC或COD的去除率,都是photo-Fenton程序的效果最佳。 此外,在Fenton程序及photo-Fenton程序中,大約在20到30分鐘處理就已經達到平衡,顯示高級氧化處理程序是一種非常有效的處理方法。
In recent years, people are paying more attention to emerging contaminants due to their great influence and the threat they may impose on the environment. Advanced oxidation processes (AOPs) can effectively produce strongly oxidizing and non-specific hydroxyl radical (.OH) to degrade pollutants, and thus are widely used to process various organic pollutants in the wastewater. This study uses antibiotic chlortetracycline (CTC) as the target pollutant and perform UV/H2O2 process, Fenton process and photo-Fenton process of AOP to degrade CTC and chemical oxygen demand (COD) in wastewater through changing different parameters (H2O2 concentration, Fe2+ concentration, light intensity). In addition, we also discuss the influences and differences between processes. The result shows that when concentration of CTC pollutant is 10 mg / L, the optimal treatment conditions for UV/H2O2 process are [H2O2] = 1.97 mM, light intensity = 90 W, pH = 3 and the removal rate is 72.3 %; the optimal treatment conditions for Fenton process are [H2O2] = 1.18 mM, [Fe2+] = 0.059 mM, light intensity = 90 W, pH = 3 and the removal rate is 85.4 %; the optimal treatment conditions for photo-Fenton process are [H2O2] = 1.97 mM, [Fe2+] = 0.059 mM, light intensity = 90 W, pH = 3 and the removal rate is 96.8 %. Hence, among the three processes, the effect of photo-Fenton process was the best in terms of both CTC and COD pollutants removal rate. Furthermore, for Fenton process and photo-Fenton process, equilibrium was achieved after 20 to 30 minutes of treatment, suggesting AOP to be a very effective treatment method.
URI: http://hdl.handle.net/11455/91638
文章公開時間: 2018-08-31
顯示於類別:環境工程學系所

文件中的檔案:
檔案 大小格式 
nchu-104-7100063010-1.pdf2.37 MBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。