Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91642
標題: Pt/N-TiO2/SrTiO3 光觸媒應用於降解實廠廢水中之 EDTA 並同時產氫之研究
Simultaneous hydrogen evolution and degradation of EDTA dissolved in the real wastewater over Pt/N-TiO2/SrTiO3 photocatalyst
作者: Yi-Jean Gong
龔怡禎
關鍵字: 光觸媒
產氫
Pt/N-doped TiO2/SrTiO3
電鍍業實廠廢水
模擬太陽光
Photocatalysis
Hydrogen evolution
Pt/N-doped TiO2/SrTiO3
real electroplating wastewater
simulated sunlight
引用: 毛宗強,張勝雄,氫能: 21 世紀的綠色能源, 新文京開發出版股份有限公司, (2008). 呂宗昕, 圖解奈米科技與光觸媒, 商周出版, (2003). 高濂,張青紅,奈米光觸媒, 五南圖書出版股份有限公司, (2004). 藤?昭,謝文權, 圖解光觸媒, 全華圖書股份有限公司, (2006). 經濟部能源局, 2007 年能源科技研究發展白皮書, (2007) 204-211. 經濟部能源局, 能源產業技術白皮書, (2012) 260-265. 經濟部工業局, 工業污染防治技術手冊-電鍍工廠廢水污染防治, (1994)5-10. 林有銘, 功能性粉末奈米光觸媒, 科學發展, (2006) 24-31. 林宛嫺, 溶膠凝膠法與固相法製備鉭酸鈉及其應用於紫外光分解水製氫之研究, 國立成功大學化學工程學系,碩士論文, (2006). 陳建志, 以常壓電漿輔助程序製造氮摻雜二氧化鈦可見光觸媒奈米微粒之研究, 國立交通大學環境工程系,博士論文, (2007). 陳婉君, 以熱沉積法摻雜氮在二氧化鈦之特性與光催化研究, 國立臺灣科技大學化學工程系,碩士論文, (2007). 鄭玫玲, 金、鉑擔載於二氧化鈦上進行光催化甲醇重組產氫之研究, 國立中央大學材料科學與工程系,碩士論文, (2007). 黃柄橓, Pt/TiO2-xNx/SrTiO3 光觸媒以提升太陽能光解水產氫速率, 國立中興大學環境工程學系,博士論文, (2012). 廖世凱, 以乙二胺四乙酸廢水作為光催化產氫犠牲劑之研究, 國立中興大學環境工程學系,碩士論文, (2012). 劉昭彰, Pt/TiO2-AC 與 Pt/TiO2-MWCNT 觸媒光催化降解 EDTA 廢水並產氫之研究, 國立中興大學環境工程學系,碩士論文, (2013). Alkaim, A. F., Kandiel, T. A., Hussein, F. H., Dillert, R., Bahnemann, D. W., Solvent-free hydrothermal synthesis of anatase TiO2 nanoparticles with enhanced photocatalytic hydrogen production activity, Applied Catalysis A: General, 466 (2013) 32-37. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y., Visible-light photocatalysis in nitrogen-doped titanium oxides, science, 293 (2001) 269-271. ASTM, Standard Test Methods for Sodium Salts of EDTA in Water, (1998). Balat, H., Kırtay, E., Hydrogen from biomass–present scenario and future prospects, International Journal of Hydrogen Energy, 35 (2010) 7416-7426. Berr, M. J., Wagner, P., Fischbach, S., Vaneski, A., Schneider, J., Susha, A. S., Rogach, A. L., Jäckel, F., Feldmann, J., Hole scavenger redox potentials determine quantum efficiency and stability of Pt-decorated CdS nanorods for photocatalytic hydrogen generation, Applied Physics Letters, 100 (2012) 223903. Chen, L., Liu, T., Ma, C. a., Metal complexation and biodegradation of EDTA and S, S-EDDS: a density functional theory study, The Journal of Physical Chemistry A, 114 (2009) 443-454. Chen, X., Lou, Y. B., Samia, A. C., Burda, C., Gole, J. L., Formation of Oxynitride as the Photocatalytic Enhancing Site in NitrogenDoped Titania Nanocatalysts: Comparison to a Commercial Nanopowder, Advanced Functional Materials, 15 (2005) 41-49. Cheng, P., Deng, C., Gu, M., Dai, X., Effect of urea on the photoactivity of titania powder prepared by sol–gel method, Materials chemistry and physics, 107 (2008) 77-81. Fujishima, A., Honda, K., Photolysis-decomposition of water at the surface of an irradiated semiconductor, Nature, 238 (1972) 37-38. Fujishima, A., Rao, T. N., Tryk, D. A., Titanium dioxide photocatalysis, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1 (2000) 1-21. Habibi, M. H., Hassanzadeh, A., Mahdavi, S., The effect of operational parameters on the photocatalytic degradation of three textile azo dyes in aqueous TiO2 suspensions, Journal of Photochemistry and Photobiology A: Chemistry, 172 (2005) 89-96. Huang, B.-S., Wey, M.-Y., Characterization of N-doped TiO2 nanoparticles supported on SrTiO3 via a sol–gel process, Journal of Nanoparticle Research, 16 (2014) 1-8. Hussein, F. H., Comparison between solar and artificial photocatalytic decolorization of textile industrial wastewater, International Journal of Photoenergy, 2012 (2012) 1-10. Jing, D., Guo, L., Zhao, L., Zhang, X., Liu, H., Li, M., Shen, S., Liu, G., Hu, X., Zhang, X., Efficient solar hydrogen production by photocatalytic water splitting: from fundamental study to pilot demonstration, International Journal of Hydrogen Energy, 35 (2010) 7087-7097. Landmann, M., Rauls, E., Schmidt, W., The electronic structure and optical response of rutile, anatase and brookite TiO2, Journal of Physics: Condensed Matter, 24 (2012) 195503. Ni, M., Leung, M. K., Leung, D. Y., Sumathy, K., A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production, Renewable and Sustainable Energy Reviews, 11 (2007) 401-425. Puangpetch, T., Sreethawong, T., Chavadej, S., Hydrogen production over metal-loaded mesoporous-assembled SrTiO3 nanocrystal photocatalysts: Effects of metal type and loading, International Journal of Hydrogen Energy, 35 (2010) 6531-6540. Sahoo, C., Gupta, A. K., Pillai, I. M. S., Heterogeneous photocatalysis of real textile wastewater: Evaluation of reaction kinetics and characterization, Journal of Environmental Science and Health, Part A, 47 (2012) 2109-2119. Sakulkhaemaruethai, S., Sreethawong, T., Synthesis of mesoporous-assembled TiO2 nanocrystals by a modified urea-aided sol-gel process and their outstanding photocatalytic H2 production activity, International Journal of Hydrogen Energy, 36 (2011) 6553-6559. Selcuk, M. Z., Boroglu, M. S., Boz, I., Hydrogen production by photocatalytic water-splitting using nitrogen and metal co-doped TiO2 powder photocatalyst, Reaction Kinetics, Mechanisms and Catalysis, 106 (2012) 313-324. Sivaranjani, K., Gopinath, C. S., Porosity driven photocatalytic activity of wormhole mesoporous TiO2-xNx in direct sunlight, Journal of Materials Chemistry, 21 (2011) 2639-2647. Sreethawong, T., Puangpetch, T., Chavadej, S., Yoshikawa, S., Quantifying influence of operational parameters on photocatalytic H2 evolution over Pt-loaded nanocrystalline mesoporous TiO2 prepared by single-step sol–gel process with surfactant template, Journal of power sources, 165 (2007) 861-869. Sun, T., Fan, J., Liu, E., Liu, L., Wang, Y., Dai, H., Yang, Y., Hou, W., Hu, X., Jiang, Z., Fe and Ni co-doped TiO2 nanoparticles prepared by alcohol-thermal method: Application in hydrogen evolution by water splitting under visible light irradiation, Powder Technology, 228 (2012) 210-218. Tran, P. D., Xi, L., Batabyal, S. K., Wong, L. H., Barber, J., Loo, J. S. C., Enhancing the photocatalytic efficiency of TiO2 nanopowders for H2 production by using non-noble transition metal co-catalysts, Physical Chemistry Chemical Physics, 14 (2012) 11596-11599. Vorontsov, A. V., Savinov, E. N., Zhensheng, J., Influence of the form of photodeposited platinum on titania upon its photocatalytic activity in CO and acetone oxidation, Journal of Photochemistry and Photobiology A: Chemistry, 125 (1999) 113-117. Yu, J., Hai, Y., Cheng, B., Enhanced photocatalytic H2-production activity of TiO2 by Ni(OH)2 cluster modification, The Journal of Physical Chemistry C, 115 (2011) 4953-4958. Yu, J., Ran, J., Facile preparation and enhanced photocatalytic H2-production activity of Cu(OH)2 cluster modified TiO2, Energy & Environmental Science, 4 (2011) 1364-1371. Zhang, J., Bang, J. H., Tang, C., Kamat, P. V., Tailored TiO2−SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance, ACS nano, 4 (2009) 387-395. Zhang, X., Zhao, X., Su, H., Degradation characteristic of TiO2-chitosanadsorbent on Rhodamine B and purification of industrial wastewater, Korean Journal of Chemical Engineering, 28 (2011) 1241-1246. Zhao, X., Xiao, G., Zhang, X., Su, H., Tan, T., The Effect of Ni2+ and Cu2+ on the Photocatalytic Degradation of Dyes by the Chitosan–TiO2 Complex, Applied biochemistry and biotechnology, 168 (2012) 183-197. Zhu, J., Chen, F., Zhang, J., Chen, H., Anpo, M., Fe3+-TiO2 photocatalysts prepared by combining sol–gel method with hydrothermal treatment and their characterization, Journal of Photochemistry and Photobiology A: Chemistry, 180 (2006) 196-204.
摘要: 工業發展導致化石燃料消耗殆盡及產生污染性廢氣亦衝擊環境之生態。因此,開發無污染性及高熱值特性之替代燃料則為目前重要的課題。氫氣為潔淨的替代燃料且應用於燃料電池具有高能量轉換效率等特性。在眾多的產氫方法當中,光催化產氫程序為其中一項具有發展潛力之技術。 乙二胺四乙酸(EDTA)為電鍍業常見之金屬螯合劑,而在廢水的處理程序中,需添加大量的重金屬捕集劑來捕捉金屬螯合物。若排放的廢水中含有未被捕集之金屬螯合物,生態環境則會因游離的金屬釋毒而致失衡。為了提升氫氣之轉換率以及同時拓展 EDTA 廢水之功能性,本研究嘗試使用於模擬太陽光照下具催化活性之 Pt/N-doped TiO2/SrTiO3 三接面材料做為觸媒以及使用實廠 EDTA 廢水做為光催化反應中之犧牲劑,探討該觸媒在不同之觸媒濃度、反應溶液初始濃度及反應溶液 pH 值對於光催化還原產氫之影響。此外,本研究亦進一步探討在光催化系統中,EDTA 被氫氧自由基和超氧自由基降解之程度。 研究結果顯示,在觸媒濃度為 2g L-1 時有最佳之催化表現,其產氫量為 120μmol h-1g-1 ,因此單位時間下提供最多觸媒活性位基來吸收光能故使產氫量最高。而反應溶液初始濃度於未稀釋的情況下有最佳之電洞捕捉效益。當反應溶液pH 值為 6 時,觸媒展現最佳之催化活性,其產氫量提升至 305 μmol h-1g-1。此歸因於當 pH 值為 6 時,觸媒不易因酸性環境而團聚,且其觸媒表面之負電荷也較於 pH 值為 7~9.75 時來得少,因此,其與游離之 EDTA2-和 EDTA3-發生靜電相斥之現象相對地較低,且觸媒與 EDTA 分子反應之機率較高。本研究藉由化學需氧量分析結果得知經光催化反應後,廢水之 EDTA 分子得以有效地降解,其最高去除效率為 4476 mg/L·h,並由實廠廢水再使用性結果了解,使用實廠廢水作為反應溶液可持續提供作為產氫原料外,也增加廢棄物再利用之雙重效益。
Nowadays, the amount of fossil fuel on the Earth is depleting due to the development of industry. The consumption of fossil fuel accompanies the greenhouse gas emission, which causes climate change. In order to satisfy the energy demand and to restrain the negative impact on environment, developing a technology for non-pollute alternative fuel production is a necessary progress. Hydrogen, which is one of the alternative fuels, has some advantages such as high heating value and high energy conversion, so it is considered to be the major fuel for future. Among lots of hydrogen production technologies, photocatalysis is regarded as a more prospective way for hydrogen evolution because this procedure only needs solar energy, water and photocatalyst to be the major resources. After light irradiation, the photo-excited electron and hole migrated from the bulk to the surface of catalyst can facilitate the H2O reduction (H+ to H2) and organic compound oxidation), respectively. EDTA is conventionally used for the chelation of metal ions (ex: Ca, Ni, Cu, Pd, and Cd) in the manufacturing processes of electroplating industry. In the procedure of wastewater treatment, it usually need to add large amounts of heavy metal precipitant for heavy metal capture because the strong bonding between heavy metal and EDTA. If discharging wastewater into river without proper treatment, it would cause the toxic chelation compound to pollute natural water and ultimately damage the balance of ecosystem through a biologically cumulative effect. To increase the hydrogen yield and extend the application of wastewater which contained EDTA compound before treatment, the real electroplating wastewater with EDTA was chosen as the sacrificial agent for photocatalytic system, and the effect of operating variables (photocatalyst concentration, initial concentration of wastewater, reaction pH) on hydrogen evolution over Pt/N-doped TiO2/SrTiO3 triple-junction photocatalyst was investigated in this study. In addition, the photocatalytic activity of the Pt/N-doped TiO2/SrTiO3 photocatalyst was studied by photo-oxidation of EDTA molecule contained in the real electroplating wastewater. The results showed that the Pt/N-doped TiO2/SrTiO3 photocatalyst exhibited better photocatalytic activity when the photocatalyst concentration was equal to 2g L-1 under simulated sunlight irradiation, and the H2 yield reached 120 μmol/h/g. The photo-excited hole was trapped by EDTA2- and EDTA3- efficiently in the undiluted real electroplating wastewater. The Pt/N-doped TiO2/SrTiO3 photocatalyst displayed maximum photocatalytic activity (H2 yield: 305 μmol/g/h) at pH 6.0. It was ascribed to the well distribution of Pt/N-doped TiO2/SrTiO3 photocatalyst in the wastewater and the less electrostatic repulsion between Pt/N-doped TiO2/SrTiO3 photocatalyst and dissociated EDTA molecule. The results of COD analysis verified that the EDTA molecule contained in the real electroplating wastewater could be degraded by photo-excited holes in this photocatalytic system, and the best EDTA removal rate was 4476 mg/L‧h.
URI: http://hdl.handle.net/11455/91642
文章公開時間: 2018-07-15
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.