請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/91648
標題: 以界面活性劑増效電動力技術復育受雙酚 A 污染土壤之探討
Surfactant-enhanced Electrokinetic Remediation of Bisphenol A from Soil
作者: Po-Chih Lai
賴柏誌
關鍵字: 雙酚A
聚氧乙烯(20)山梨醇單油酸酯
十二烷基硫酸鈉
電動力復育
Bisphenol A(BPA)
Polyoxyethylene(20) sorbitan monooleate (Tween-80)
Electrokinetic remediation
Sodium dodecyl sulfate (SDS)
引用: 中文文獻 1. 王鳳英(1993)。界面活性劑的原理與應用,高力圖書有限公司。 2.王舜屏(2000)。界面活性劑對土壤/水系統中有機污染物分佈行為之研究,國立中央大學環境工程研究所,碩士論文。 3.王志哲(2000)。陰離子及複合(陰離子/中性)界面活性劑系統對 BTEX 污染土壤復育效率之研究。國立中山大學環境工程研究所,碩士論文。 4.李貽華、徐慈鴻(2004)。多環芳香族碳氫化合物 (PAHs) 與植物。藥毒所專題報導,第 75 期,第 1-12 頁。 5.李承佑(2004)。以 Tween-80 為碳源生產 Acinetobacter radioresistens 脂肪酵素。國立成功大學化學工程學系,博士論文。 6.吳建誼、丁望賢(2000)。環境荷爾蒙-壬基苯酚與雙酚 A 在臺灣水環境中之分析與流布調查。環境檢驗通訊雜誌,第 33 期,第 12-21 頁。 7.林舜隆(1996)。利用電動力法處理人工合成重金屬汙染土壤之研究。國立中山大學環境工程研究所,碩士論文。 8.林裕雄(2000)。以電動力法處理受三氯乙烯及單氯酚污染黏質土壤之研究。國立中興大學環境工程系碩士論文。 9.洪昇鵬(2001)。以融合微滴電噴灑游離質譜法消除有機鹽類對蛋白質分析物的干擾。國立中山大學化學系,碩士論文。 10. 馬強、白樺、王超、張慶、肖海清、周新、閆妍、董益陽和王寶麟(2009)。高效液相色譜法對紡織品和食品包裝材料中的壬基酚、辛基酚和雙酚 A 的同時測定。分析測試學報,第 28 卷,第 10 期。 11. 夏如鶯(2006)。化妝品乳化劑之乳化效力之探討。嘉南藥理科技大學化妝品科技研究所,碩士論文。 12. 徐志宏(1990)。利用界面活性劑脫除地下水含四氯乙烯之研究。屏東科技大學環境工程與科學系,碩士論文。 13. 徐明宏(2004)。界面活性劑對土壤/水系統中有機污染物傳輸特性之影響及其土壤污染整治應用評估。國立中央大學環境工程研究所,博士論文。 14. 翁誌煌(1998)。受有機物污染廠址之物化整治技術研究:電滲透法整治有機污染廠址之研究(第二年)。行政院國科會專題研究計畫成果報告。 15. 陳百合(1997)。不同土壤組成對界面活性劑吸附機制之研究。國立中央大學環境工程系,碩士論文。 16. 陳秀芬(2006)。含界面活性劑水溶液中有機污染物揮發特性之探討。國立中央大學環境工程研究所,碩士論文。 17. 陳昌億(2010)。以電化學地質氧化技術處理雙酚A污染土壤之研究。國立高雄大學土木與環境工程系,碩士論文。 18. 袁菁、翁誌煌、陳威錦和江姿幸(2001)。以複合界面活性劑操作流質提升電動力技術處理四氯乙烯污染黏質土壤復育效率之研究。中華民國環境工程學會第十六屆廢棄物處理技術研討會論文集。 19. 袁菁、高志明、劉鴻慶和江姿幸(2004)。電動力技術結合滲透性反應牆進行土相中五價砷移除之研究 中華民國環境工程年會第二屆土壤與地下水研討會。 20. 許文瑞(2006)。界面活性劑 SDS 在人工模擬系統中的降解研究。國立雲林科技大學環境與安全衛生工程系碩士班,碩士論文。 21. 莊恭旭(2000) 利用界面活性劑與 PAHs 分解菌處理廢水中 PAHs 之研究。國立中山大學海洋環境及工程學系碩士班,碩士論文。 22. 張景環、曾濺輝(2007)。溫度和表面活性劑對土壤吸附柴油的影響。農業環境科學學報,第26期,第592-597頁。 23. 彭詠綺(2008)。製備固定式光觸媒分解水中二酚基丙烷之研究。國立雲林科技大學環境與安全衛生工程系碩士班,碩士論文。 24. 斯克誠和駱尚廉(2000)。土壤與地下水污染整治政策與其實務。土壤水利,第 26 卷,第 4 期,第 50-58 頁。 25. 程淑芬、陳慶煒(2007)。電化學對土壤污染銅酸洗效率提升之研究。朝陽科技大學環境工程與管理學系,碩士論文。 26. 黃瑞淵(2008)。改良式電動力法處理五氯酚污染土壤之研究。中華民國環境工程學會 2008 土壤與地下水研討會。 27. 葉佩雯(2002)。分子間作用力影響土壤中非離子有機物傳輸行為之研究。國立中央大學環境工程研究所,碩士論文。 28. 楊士鋒(2009)。電動力結合氨為複合劑去除土壤銅污染之研究。逢甲大學環境工程與科學學系,碩士論文。 29. 葉孟翰(2012) Tween-80 對電動力法技術復育受三氯乙烯污染土壤之探討。國立中興大學環境工程學系,碩士論文。. 30. 鄧禮浩(2011)。界面活性劑增效電動力技術復育受五氯酚污染土壤之探討。國立中興大學環境工程學系,碩士論文。 31. 鄭孟嘉(2001)。以電動力法處理受鎘、鉛污染土壤之研究。國立台灣大學化學工程學系,碩士論文。 32. 劉永章和葛煥彰(1998)。電動力現象的基本理論。化工,第四十五卷,第 2期,第 77-83 頁。 33. 劉奇岳(1999)。電動力-Fenton法現地處理受三氯乙烯及4-氯酚污染土樣之最佳操作條件探討。國立中山大學環境工程學系碩士論文。 34. 劉延湘、劉琼玉、陳芳(2009)。雙酚 A 在土壤中的吸附性能。江漢大學學報(自然科學版),第 37 卷,第 1 期。 35. 劉鎮山、陳怡如、蕭美琪、劉信宏和翁英明(2011)。水中壬基酚及雙酚 A 檢測方法調查與開發。環保署環境檢驗所調查研究年報,第 18 期。 36. 蔡浩文(2005)。零價鐵提昇電動力技術復育六價鉻污染高嶺土之小型模場研究。義守大學材料科學與工程學系,碩士論文。 37. 蔡在唐(2003)。以電動力法復育受油品污染土壤。國立屏東科技大學環境工程與科學系,碩士論文。 38. 謝濃增(2013)。利用界面活性劑增進電動力法復育受雙酚A污染土壤之研究。國立中興大學環境工程學系,碩士論文。 39. 蕭晉傑(2004)。反離子的凝聚作用和釋放於界劑溶液中添加鹽類的影響之研究。國立中央大學化學工程與材料工程研究所,碩士論文。 40. 鍾依玲(2002)。陰/陽離子液胞自發性形成之探討。國立成功大學化學工程學系,碩士論文。 41. 謝辰芳(2007)。製備界面活性劑改質之光觸媒及其分解水中二酚基丙烷之研究。國立雲林科技大學環境與安全衛生工程系碩士班,碩士論文。 42. 韓璐、王浩然、易小祺、胡錦英和張陽(2010)。粒狀活性炭對水中雙酚 A 吸附性能的研究。瀋陽師範大學學報(自然科學版),第 28 卷,第 4 期。 43. 蘇庭毅(2006)。光催化分解液相中環境荷爾蒙丙二酚-A之研究。嘉南藥理科技大學環境工程與科學系,碩士論文。 英文文獻 1.Acar, Y. B. and Alshawabkeh, A. N. (1993). Principles of electrokinetic remediation. Environment Science & Technology, Vol. 27, No. 13, pp. 2638-2647. 2. Acar, Y. B., Gale, R. J., Alshawabkeh, A. N., Marks, R. E., Puppala, S., Bricka, M. and Parker, R. (1995). Electrokinetic remediation: basics and technology status, Journal of Hazardous Materials, Vol. 40, pp. 117-137. 3. Angela, L. (2000). Effect of non ionic surfactants on dissolution of polycyclic aromatic hydrocarbons from coal tar. Practical Periodical Hazardous Toxic Radioactive Waste Management, Vol. 4, pp. 78-81. 4. Amrate, S., Akretche, D.E., Innocent, C. and Seta, P. (2006) Use of cation-exchange membranes for simultaneous recovery of lead and EDTA during electrokinetic extraction. Desalination, Vol. 193, pp. 405-410. 5. Alcántara, M. T., Gomez, J., Pazos, M., Sanromán, M. A. (2010). Electrokinetic remediation of PAH mixtures from kaolin. Journal of Hazardous Materials, Vol. 179, pp. 1156-1160. 6. Baraud, F., Tellier, S. and Astruc, M. (1999). Temperature effect on ionic transport during soil electrokinetic treatment at constant pH. Journal of Hazardous Materials, Vol. 64, pp. 263-281. 7. Bautista-toledo, I., Ferro-garcia, M. A., Rivera -utrilla, J., Moreno -castilla, C. and Vegas, F. F. J. (2005). Bisphenol A Removal from Water by Activated Carbon. Effects of Carbon Characteristics and Solution Chemistry. Environmental Science & Technology, Vol. 39, pp. 6246-6250. 8. Chiou, C. T. and Kile, D. E.(1989). Water Solubility Enhancement of DDT and Trichlorobenzene by some surfactant Below and Above the Critical Micell Concentration. Environmental Science and Technology,Vol. 23, pp. 832-838. 9. Coletta, T. F., Bruell, C. J., Ryan, D. K. and Inyang, H. I. (1997). Cation-Enhanced Removal of Lead from Kaolinite by Electrokinetics. Journal of Environmental Engineering, Vol. 123, pp. 1227-1233 10. Chung, H. I. and Kang, B. H. (1999). Lead removal from contaminated marine clay by electrokinetic soil decontamination. Engineering Geology, Vol. 53, pp. 139-150 11. Chang, J. H., Qiang, Z., Huang, C. P. and Cha, D. (2000). Electroosmotic flow rate:asemiempirical approach. Chapter 15 in Nuclear Site Remediation: First Accomplishments of the Environmental Management Science Program, ACS Symposium Series, Vol. 778, pp. 247-266. 12. Choy, W. K. and Chu, W. (2001)The modelling of trichloroethene photodegradation in Brij 35 surfactant by two-stage reaction. Chemosphere, Vol. 44, pp. 211–215. 13. Cui, Y. H., Li, X. Y. and Chen, G. (2009). Electrochemical degradation of bisphenol A on different anodes. Water Research, Vol. 43, pp. 1968-1976. 14. Cang, L., Fan, G. P., Zhou, D. M. and Wang, Q. Y. (2013). Enhanced-electrokinetic remediation of copper–pyrene co-contaminated soil with different oxidants and pH control. Chemosphere, Vol. 90, pp. 2326-2331. 15. Darmawan, S. and Wada, S. I. (2002). Effect of clay mineralogy on the feasibility of electrokinetic soil decontamination technology. Applied Clay Science, Vol. 20, pp. 283-293. 16. Daher, C. F., Baroody, G. M. and Howland, R. J. (2003). Effect of a surfactant, Tween 80, on the formation and secretion of chylomicrons in the rat. Food and Chemical Toxicology, Vol. 41, pp. 575-582. 17. Fan, G . P., Cang, L., Fang, G . D. and Zhou, D. M.(2014). Surfactant and oxidant enhanced electrokinetic remediation of a PCBs polluted soil. Separation and Purification Technology, Vol. 123, pp. 106-113. 18. Giannis, A., Nikolaou, A., Pentari, D. and Gidarakos, E. (2009). Chelating agent- assisted electrokinetic removal of cadmium, lead and copper from contaminated soils. Environmental Pollution, Vol. 157, pp. 3379-3386. 19. Gannon, O. K., Bibring, P., Raney, K., Ward, J. A., Wilson, D. J., Underwood, J. L. and Debelak, K. A. (1989). Soil clean up by in situ surfactant flushing. Environmental Science and Technology, Vol. 24, pp. 1073-1094. 20. Gao, J., Luo, Q . S., Zhang, C . B., Li, B . Z. and Meng, L.(2013). Enhanced electrokinetic removal of cadmium from sludge using a coupled catholyte circulation system with multilayer of anion exchange resin. Chemical Engineering Journal, Vol. 234, pp. 1-8. 21. Hamed, J. T. and Bhadra, A. (1997). Influence of current density and pH on electrokinetics. Journal of Hazardous Materials, Vol. 55, pp. 279-294. 22. Ho, V. S. (1999). The Lasagna technology for in-situ soil remediation:1. Small field test. Environmental Science and Technology, Vol. 33, pp. 1086-1091. 23. Hou, J., Pan, B., Niu, X., Chen, J. and Xing, B. (2010). Sulfamethoxazole sorption by sediment fractions in comparison to pyrene and bisphenol A. Environmental Pollution, Vol. 158, pp. 2826-2832. 24. Jin, S., Fallgren, P. H., Morris, J. M. and Edgar, E. S. (2008). Degradation of trichloroethene in water by electron supplementation. Chemical Engineering Journal, Vol. 140, pp. 642-645. 25. Jin, S. and Fallgren, P. H. (2010). Electrically induced reduction of trichloroethene in clay. Journal of Hazardous Materials, Vol. 173, pp. 200-204. 26. Krishnan, A. V., Stathis, P., Permuth, S. F., Tokes, L.and Feldman, D. (1993). Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology Philadelphia, Vol. 132, pp. 2279-2279. 27. Ko, S. O., Schlautman, M. A. and Carraway, E. R. (1998). Effects of solution chemistry on the partitioning of phenanthrene to sorbed surfactants. Environmental Science and Technology, Vol. 32, pp 3542-3548. 28. Krauss, H., Zorn, R., Haus, R. and Czurda, K. (2001). Electroosmotic transport in fine grained sediments with respect to pore throats. Proceedings EREM 2001 3rd Symposium and Status Report on Electrokinetic Remediation. Published by AGK University of Karlsruhe,Chapter 31, pp. 3-12. 29. Kim, S. O., Moon, S. O., Kim, K. W. and Yun, S.T. (2002). Pilot scale on the exsite electrokinetic removal of heavy metal from municipal wastewater sludge. Water Research, Vol. 36, pp. 4765-4774. 30. Kuramitz, H., Matsushita, M. and Tanaka, S. (2004). Electrochemical removal of bisphenol A based on the anodic polymerization using a column type carbon fiber electrode. Water Research, Vol. 38, pp. 2331-2338. 31. Kaya, A. and Yukselen, Y. (2005). Zeta potential of soils with surfactants and its relevance to electrokinetic remediation. Journal of Hazardous Materials, Vol. 120, pp. 119-126. 32. Karagunduz, A., Gezer, A. and Karasuloglu, G. (2007). Surfactant enhanced electrokinetic remediation of DDT from soils. Science of The Total Environment, Vol. 385, pp. 1-11. 33. Kim, D. H., Jeon, C. S., Baek, K., Ko, S. H. and Yang, J. S. (2009). Electrokinetic remediation of fluorine-contaminated soil:Conditioning of anolyte. Journal of Hazardous Materials, Vol. 161, pp. 565-569. 34. Kim, D. H., Ryu, B. G., Park, S. W., Seo, C. and Baek, K. (2009). Electrokinetic remediation of Zn and Ni-contaminated soil. Journal of Hazardous Materials, Vol. 165, pp. 501-505. 35. Kim, K. J., Kim, D. H., Yoo, J. C. and Baek, K. (2011). Electrokinetic extraction of heavy metals from dredged marine sediment. Separation and Purification Technology , Vol.79, pp. 164–169 36. Larry, C. M. and Chen, J. L. (1997). Effects of conductive fractures during in-situ electroosmosis. Journal of Hazardous Materials, Vol. 55, pp. 239-262. 37. Leinz, R. W., Hoover, D. B. and Meier, A. L. (1998). NEOCHIN: An electrochemical method for environmental application. Journal of Geochemical Exploration, Vol. 64, pp. 421-434. 38. Lu, P., Feng, Q., Meng, Q. and Yuan, T. (2012). Electrokinetic remediation of chromium- and cadmium-contaminated soil from abandoned industrial site. Separation and Purification Technology, Vol. 98, pp. 216-220. 39. Murugananthan, M., Yoshihara, S., Rakuma, T. and Shirakashi, T. (2008). Mineralization of bisphenol A (BPA) by anodic oxidation with boron-doped diamond (BDD) electrode. Journal of Hazardous Materials, Vol. 154, pp. 213–220. 40. Ma, J. W., Wang, F. Y., Huang, Z. H. and Wang, H. (2010). Simultaneous removal of 2,4-dichlorophenol and Cd from soils by electrokinetic remediation combined with activated bamboo charcoal. Journal of Hazardous Meterials, Vol. 176, pp. 715-720. 41. Nyer, E. K., Fam, S., Kidd, D. F., Palmcr, P. L., Bocttcheer, G., Crossman, T. L. and Suthersan, S.S. (1996). In-situ Treatment. CRC Press Inc., Boca Raton, Florida, pp. 310-314. 42. Oonnittan, A., Shrestha, R. A. and Sillanpää, M. (2009). Removal of hexachlorobenzene from soil by electrokinetically enhanced chemical oxidation. Journal of Hazardous Materials, Vol. 162, pp. 989-993. 43. Pazos, M., Sanromán, M.A. and Cameselle, C. (2006). Improvement in electrokinetic remediation of heavy metal spiked kaolin with the polarity exchange technique. Chemosphere, Vol. 62, pp. 817-822. 44. Pazos, M., Ricart, M. T., Sanromán, M. A. and Cameselle, C. (2007). Enhanced electrokinetic remediation of polluted kaolinite with an azo dye. Electrochimica Acta, Vol. 52, pp. 3393-3398. 45. Polcaro, A. M., Vacca, A., Mascia, M. and Palmas, S. (2007) Electrokinetic removal of 2,6-dichlorophenol and diuron from kaolinite and humic acid-clay system. Journal of Hazardous Materials, Vol. 148, pp. 505-512. 46. Park, J. Y., Lee, H. H., Kim, S. J., Lee, Y. J. and Yang, J. W. (2007). Surfactant- enhanced electrokinetic removal of phenanthrene from kaolinite. Journal of Hazardous Materials, Vol. 140, pp. 230-236. 47. Park, S. W., Lee, J. Y., Yang, J. S., Kim, K. J. and Baek, K. (2009).Electrokinetic remediation of contaminated soil with waste-lubricant oils and zinc. Journal of Hazardous Materials, Vol. 169, pp. 1168–1172. 48. Peng, G., Tian, G., Liu, J., Bao, Q. and Zang, L. (2010) Removal of heavy metals from sewage sludge with a combination of bioleaching and electrokinetic remediation technology. Desalination, Vol. 271, pp. 100-104. 49. Pazos, M., Plaza, A., Martin, M. and Lobo, M. C. (2012). The impact of electrokinetic treatment on a loamy-sand soil properties. Chemical Engineering Journal, Vol. 183, pp. 231-237. 50. Pazos, M., Iglesias, O., Gómez, J., Rosales, E. and Sanromán, M. A. (2013). Remediation of contaminated marine sediment using electrokinetic-Fenton technology. Journal of Industrial and Engineering Chemistry, Vol. 19, pp. 932-937. 51. Tanaka, S., Nakata, Y., Kimura, T., Yustiawati, Kawasaki M. and Kuramitz, H. (2002). Electrochemical decomposition of bisphenol A using Pt/Ti and SnO2/Ti anodes. Journal of Applied Electrochemistry, Vol. 32, pp. 197-201. 52. Traina, G., Morselli, L. and Adorno, G.P. (2007). Electrokinetic remediation of bottom ash from municipal solid waste incinerator. Electrochimica Acta, Vol. 52, pp. 3380-3385. 53. Rosen, M. J. (1989). Surfactant and Interfacial Phenomena. 2nd ed. New York, NY : John Wiley and Sons, Inc. 54. Reddy, K. R., Xu, C. Y. and Chinthamreddy, S. (2001). Assessment of electrokinetic removal of heavy metals from soil by sequential extraction analysis. Journal of Hazardous Materials, Vol. 84, pp. 279-296. 55. Ryu, B. G., Park, G. Y., Yang, J.W. and Baek, K. (2010). Electrolyte conditioning for electrokinetic remediation of As, Cu, and Pb –contaminated soil. Separation and Purification Technology, pp. 1-25. 56. Sabatini, D. A., Konx, R. C., Harwell, J. H. and Wu, B. (2000). Integrated design of surfactant enhanced DNAPL remediation: efficient supersolubilization and gradient systems. Journal of Contaminant Hydrology, Vol. 45, pp. 99-121. 57. Shen, Z., Chen, X., Jia, J., Qu, L. and Wang, W. (2007). Comparison of electrokinetic soil remediation methods using one fixed anode and approaching anodes. Environmental Pollution,Vol. 150, pp. 193-199. 58. Sah, J., Tsai, T. T. and Kao, C. M. (2010). Application of iron electrode corrosion enhanced electrokinetic-Fenton oxidation to remediate diesel contaminated soils: A laboratory feasibility study. Journal of Hydrology, Vol. 380, pp. 4-13. 59. Sanroman, M . A., Pazos , M., Gomez, J. and Alcantara, M . T.(2010). Electrokinetic remediation of PAH mixtures from kaolin. Journal of Hazardous Materials, Vol. 179, pp. 1156-1160. 60. Vane, M. L. and Zang, G. M. (1997). Effect of aqueous phase properties on clay partical zeta potential and Electro-osmotic permeability:implications for electro-kinetic soil remediation processes. Journal of Hazardous Materials, Vol. 55, pp. 1-22. 61. Virkutyte, J., Sillanpaa, M. and Latostenmaa, P. (2002). Electrokinetic soil rediation-critical overview. The Science of the Total Environment, Vol. 289, pp. 97-121. 62. Wu, Z., Ye, Q. and Cong, Y. (2005). Electrokinetic behavior of chlorinated phenols in soil and their electrochemical degradation. Process Safety and Environmental Protection, Vol. 83, pp. 178-183. 63. Wang, J. Y., Zhang, D. S., Stabnikova, O. and Tay, J. H. (2005). Evaluation of electrokinetic removal of heavy metals from sewage sludge. Journal of Hazardous Materials, Vol. 124, pp. 139-146. 64. Wang, J. Y., Huang, X. J., Kao, J. C. and Stabnikova, O. (2006). Removal of heavy metals from kaolin using an upward electrokinetic soil remedial (UESR) technology. Journal of Hazardous Materials, Vol. 136, pp. 532–541. 65. Xu, Q. and Snell, E. D. (1991). Adsorption behavior of alkylarylethoxylated alcohols on silica. Journal of Colloid and Interface Science, Vol. 144, pp. 165-173. 66. Yuan, C. and Chiang, T.S. (2008). Enhancement of electrokinetic remediation of arsenic spiked soil by chemical reagents. Journal of Hazardous Materials , Vol. 152, pp. 309-315. 67. Yang, G. C. and Chang, Y. I. (2011). Integration of emulsified nanoiron injection with the electrokinetic process for remediation of trichloroethylene in saturated soil. Separation and Purification Technology, Vol. 79, pp. 278-284.
摘要: 隨著各種科技產業的進步,改善人類的生活方式,但同時也造成環境污染的問題。許多學者發現,環境中有一些與生物體內激素作用類似的化學物質,可能會對人類健康和環境造成危害,這些物質統稱為環境荷爾蒙(Environmental Hormone)。雙酚 A(Bisphenol A,BPA),具有質量輕、透明性佳、可耐熱等特性,主要作為聚碳酸酯樹脂(polycarbonate,PC)產品的原料、塑化過程的抗氧化劑或塑化劑,用以強化塑膠的防碎性和透明度,為近幾年來被人們所注意的環境荷爾蒙之一。 電動力復育技術是近年來極具發展潛力的處理方法,其主要利用電場所造成離子遷移及電滲透流等機制作用,將土壤中離子性物質或溶解態物質去除,然而對於疏水性有機污染物,由於其水相溶解度較低,單獨以電動力技術處理之效果不佳。故本研究將會添加界面活性劑來增強電動力法對於污染物的去除效率。 本研究主要分成兩部分,一開始以不同濃度的Tween-80 和SDS 搭配電解質0.05 M之MgCl2 作為操作液,探討電動力實驗後對於土壤中雙酚A之移除效果。接著將替換不同濃度的電解質NaOH並會加入Tween-80 於陽極操作液中。實驗結果顯示,對照組實驗Test 1 單純以電解質之 0.05M MgCl2 作為電解液,其去除率為 32.76%;而實驗組Test 2 及Test 3 分別加入 10 mg/L及 50 mg/L之Tween-80 於陽極電解液中,去除率分別為 56.71%及 36.37%;實驗組Test 4 及Test 5 分別加入 10 mg/L及 50 mg/L之SDS於陽極電解液中,去除率分別為 38.91%及 44.26%;Test 6 以電解質之 0.05 M NaOH作為電解液,其去除率為 91.66%;Test 7 以電解質之 0.025 M NaOH作為電解液,其去除率為 85.69%,而Test 8 的電解質濃度為0.025 M NaOH並加入 10 mg/L之Tween-80 於陽極電解液中,去除率為 79.46%。實驗結果發現,以NaOH作為電解液時能產生較高的電滲透流,土壤中雙酚A移除效果也較好。
With the improvment of various technology industry makes the human’s life better, which causes many problems of environmental pollution. Many researchers have found that there are some chemical substances similar to the biological hormones that may contaminate human health and environment. These substances are collectively referred to as environmental hormones. Bisphenol A (BPA) has been concerned in recent years, the properties of BPA include light weight, good transparency and heat proof. The main purposes of BPA are the material of PC product, antioxidants or plasticizing agent of the plasticizing process, which improve the shatterproof and transparency of plastic. Electrokinetic remediation (EK) is one of the booming techniques in recent years,it can remove the ionic substances or dissolved substances in the soil by electromigration and electroosmosis etc. Because hydrophobic organic compounds are of the low solubility in water, the electrokinetic removal is not effective. This study will add surfactant in the EK system to enhance the removal efficiency of BPA from soils. The experiment will be divided into two parts. In the beginning, the focus is on the different concentrations of Tween-80 and SDS with 0.05M MgCl2 as the operating liquid and discuss the remove rate of BPA from soil after the experiment. After the previous experiment, replace MgCl2 for the different concentrations of NaOH and one of the test will add Tween-80 in anodic operating liquid. Test 1 only;use 0.05M MgCl2 electrolyte as operating liquid, and the removal rate is 32.76% Test 2 and Test 3 added 10 mg / L and 50 mg / L of Tween-80 into the operating liquid with experiments, the removal rate is up to 56.71% and 36.37%;Test 4 and Test 5 added 10 mg / L and 50 mg / L of SDS into the operating liquid with experiments, the removal rate is 38.91% and 44.26%;Test 6 use 0.05M NaOH electrolyte as operating liquid, and the removal rate is 91.66%;Test 7 use 0.025M NaOH electrolyte as operating liquid, and the removal rate is 85.69%,and Test 8 use 0.025M NaOH electrolyte as operating liquid, and it add 10 mg / L of Tween-80 in anodic operating liquid, the removal rate is 79.46%. The results showed that using NaOH electrolyte as operating liquid can produce high electroosmosis and the removal efficiency is better.
URI: http://hdl.handle.net/11455/91648
文章公開時間: 2018-07-15
顯示於類別:環境工程學系所

文件中的檔案:
檔案 大小格式 
nchu-103-7101063003-1.pdf1.91 MBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。