Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91649
標題: 以真空輔助浸塗法製備管柱式碳分子篩選薄膜之結構特徵與氣體分選效能之探討
Preparation and characterization of tubular carbon molecular sieving membrane by vacuum-assisted dip-coating method and their gas separation properties
作者: Po-Yu Cheng
鄭博育
關鍵字: 管柱式碳膜
浸塗法
真空輔助系統
氣體分離
氧化鋁基材
Tubular carbon membrane
dip-coating
Vacuum-assisted system
Gas separation
Al2O3 support
引用: [1] X. He, M.-B. Hägg, Hollow fiber carbon membranes: Investigations for CO2 capture, Journal of Membrane Science, 378 (2011) 1-9. [2] P. Shao, M.M. D.-C., M.D. Guiver, A. Kumar, Simulation of membrane-based CO2 capture in a coal-fired power plant, Journal of Membrane Science, 427 (2013) 451-459. [3] M. Songolzadeh, M. Soleimani, M. Takht Ravanchi, R. Songolzadeh, Carbon Dioxide Separation from Flue Gases: A Technological Review Emphasizing Reduction in Greenhouse Gas Emissions, The Scientific World Journal, 2014 (2014), 1-35. [4] D.J. Thambimuthu K, Gupta M. Regina, CO2 Capture and Reuse, In Proceedings of IPCC workshop on carbon dioxide capture and storage, (2002) 31-52. [5] J.-R. Li, Y. Ma, M.C. McCarthy, J. Sculley, J. Yu, H.-K. Jeong, P.B. Balbuena, H.-C. Zhou, Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks, Coordination Chemistry Reviews, 255 (2011) 1791-1823. [6] K.-R. Hwang, C.-B. Lee, S.-K. Ryi, J.-S. Park, Hydrogen production and carbon dioxide enrichment using a catalytic membrane reactor with Ni metal catalyst and Pd-based membrane, International Journal of Hydrogen Energy, 37 (2012) 6626-6634. [7] P. Chiesa, T.G. Kreutz, G.G. Lozza, CO2 Sequestration From IGCC Power Plants by Means of Metallic Membranes, Journal of Engineering for Gas Turbines and Power, 129 (2005) 123-134. [8] C.A. Scholes, K.H. Smith, S.E. Kentish, G.W. Stevens, CO2 capture from pre-combustion processes - Strategies for membrane gas separation, International Journal of Greenhouse Gas Control, 4 (2010) 739-755. [9] D. Wappel, G. Gronald, R. Kalb, J. Draxler, Ionic liquids for post-combustion CO2 absorption, International Journal of Greenhouse Gas Control, 4 (2010) 486-494. [10] R. Thiruvenkatachari, S. Su, H. An, X.X. Yu, Post combustion CO2 capture by carbon fibre monolithic adsorbents, Progress in Energy and Combustion Science, 35 (2009) 438-455. [11] Y.H. Sim, H. Wang, F.Y. Li, M.L. Chua, T.-S. Chung, M. Toriida, S. Tamai, High performance carbon molecular sieve membranes derived from hyperbranched polyimide precursors for improved gas separation applications, Carbon, 53 (2013) 101-111. [12] N. Nwogu, M. Kajama, E. Okon, H. Shehu, E. Gobina, Testing of Gas Permeance Techniques of a Fabricated CO2 Permeable Ceramic Membrane for Gas Separation Purposes, (2014) 429-436. [13] W.N. Wan Salleh, A.F. Ismail, Effect of stabilization temperature on gas permeation properties of carbon hollow fiber membrane, Journal of Applied Polymer Science, 127 (2013) 2840-2846. [14] K. Sutherland, Profile of the international membrane industry, 2nd edition, ElsevierAmsterdam, (2000). [15] J.J. Marano, J.P. Ciferino, Integration of Gas Separation Membranes with IGCC Identifying the right membrane for the right job, Energy Procedia, 1 (2009) 361-368. [16] J. Galuszka, T. Giddings, G. Iaquaniello, Membrane assisted WGSR – Experimental study and reactor modeling, Chemical Engineering Journal, 213 (2012) 363-370. [17] J. Franz, P. Maas, V. Scherer, Economic evaluation of pre-combustion CO2-capture in IGCC power plants by porous ceramic membranes, Applied Energy, 130 (2014) 532-542. [18] H. Keshavan, A.Y.C. Ku, S.M. Kuznicki, A. Weizhu, Membrane structures suitable for gas separation, and related processes, Google Patents, (2013). [19] J.S. Choi, I.K. Song, W.Y. Lee, Performance of shell and tube-type membrane reactors equipped with heteropolyacid-polymer composite catalytic membranes, Catalysis Today, 67 (2001) 237-245. [20] M. Mahdyarfar, T. Mohammadi, A. Mohajeri, Gas separation performance of carbon materials produced from phenolic resin: Effects of carbonization temperature and ozone post treatment, New Carbon Materials, 28 (2013) 39-46. [21] A.F. Ismail, 1.13 - Preparation of Carbon Membranes for Gas Separation, in: D. Editor-in-Chief: Enrico, G. Lidietta (Eds.) Comprehensive Membrane Science and Engineering, Elsevier, Oxford, (2010), 275-290. [22] G. Li, J. Yang, J. Wang, W. Xiao, L. Zhou, Y. Zhang, J. Lu, D. Yin, Thin carbon/SAPO-34 microporous composite membranes for gas separation, Journal of Membrane Science, 374 (2011) 83-92. [23] X. Yin, J. Wang, N. Chu, J. Yang, J. Lu, Y. Zhang, D. Yin, Zeolite L/carbon nanocomposite membranes on the porous alumina tubes and their gas separation properties, Journal of Membrane Science, 348 (2010) 181-189. [24] M. Soleimani, G. Gholami, M.T. Ravanchi, Application of carbon membranes for gas separation: A Review, (2013). [25] A. Ismail, D. Rana, T. Matsuura, H. Foley, Configurations of Carbon Membranes, in: Carbon-based Membranes for Separation Processes, Springer New York, (2011), 17-27. [26] K. Briceño, A. Iulianelli, D. Montané, R. Garcia-Valls, A. Basile, Carbon molecular sieve membranes supported on non-modified ceramic tubes for hydrogen separation in membrane reactors, International Journal of Hydrogen Energy, 37 (2012) 13536-13544. [27] K. Briceño, D. Montané, R. Garcia-Valls, A. Iulianelli, A. Basile, Fabrication variables affecting the structure and properties of supported carbon molecular sieve membranes for hydrogen separation, Journal of Membrane Science, 415–416 (2012) 288-297. [28] K. Briceño, R. Garcia‐Valls, D. Montané, State of the art of carbon molecular sieves supported on tubular ceramics for gas separation applications, Asia‐Pacific Journal of Chemical Engineering, 5 (2010) 169-178. [29] M. Javidi, A.N. Hrymak, Numerical Simulation of the Dip Coating Process with Wall Effects on the Coating Film Thickness, in: Presented at the 17th International Coating Science and Technology Symposium, (2014). [30] D. Grosso, How to exploit the full potential of the dip-coating process to better control film formation, Journal of Materials Chemistry, 21 (2011) 17033-17038. [31] M. Faustini, B. Louis, P.A. Albouy, M. Kuemmel, D. Grosso, Preparation of Sol−Gel Films by Dip-Coating in Extreme Conditions, The Journal of Physical Chemistry C, 114 (2010) 7637-7645. [32] C. Strobel, A. Kadow-Romacker, T. Witascheck, G. Schmidmaier, B. Wildemann, Evaluation of process parameter of an automated dip-coating, Materials Letters, 65 (2011) 3621-3624. [33] F.Y. Ding Xiaobin, Xu Nanping, Modeling and control of cermic membrane thickness during dip coating process, Chemical Industry and Engineering (China), 57 (2006). [34] J.-i. Hayashi, M. Yamamoto, K. Kusakabe, S. Morooka, Simultaneous improvement of permeance and permselectivity of 3, 3'', 4, 4''-biphenyltetracarboxylic dianhydride-4, 4''-oxydianiline polyimide membrane by carbonization, Industrial & engineering chemistry research, 34 (1995) 4364-4370. [35] J. Franz, V. Scherer, Impact of ceramic membranes for CO2 separation on IGCC power plant performance, Energy Procedia, 4 (2011) 645-652. [36] F. Sander, Thermodynamic Analysis of Coal Fired Power Generation Cycles with Integrated Membrane Reactor and CO2 Capture, in, Dissertation, Ruhr-Universität Bochum, Bochum, (2011). [37] P.S. Goh, A.F. Ismail, S.M. Sanip, B.C. Ng, M. Aziz, Recent advances of inorganic fillers in mixed matrix membrane for gas separation, Separation and Purification Technology, 81 (2011) 243-264. [38] G.Q. Lu, J.C. Diniz da Costa, M. Duke, S. Giessler, R. Socolow, R.H. Williams, T. Kreutz, Inorganic membranes for hydrogen production and purification: A critical review and perspective, Journal of Colloid and Interface Science, 314 (2007) 589-603. [39] T.-S. Chung, L.Y. Jiang, Y. Li, S. Kulprathipanja, Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation, Progress in Polymer Science, 32 (2007) 483-507. [40] H. Cong, M. Radosz, B.F. Towler, Y. Shen, Polymer–inorganic nanocomposite membranes for gas separation, Separation and Purification Technology, 55 (2007) 281-291. [41] U. Beuscher, C. H. Gooding, The influence of the porous support layer of composite membranes on the separation of binary gas mixtures, Journal of Membrane Science, 152 (1999) 99-116. [42] S.C. Rodrigues, R. Whitley, A. Mendes, Preparation and characterization of carbon molecular sieve membranes based on resorcinol–formaldehyde resin, Journal of Membrane Science, 459 (2014) 207-216. [43] L. Shao, B.T. Low, T.-S. Chung, A.R. Greenberg, Polymeric membranes for the hydrogen economy: Contemporary approaches and prospects for the future, Journal of Membrane Science, 327 (2009) 18-31. [44] H. Li, K. Haas-Santo, U. Schygulla, R. Dittmeyer, Inorganic microporous membranes for H2 and CO2 separation-Review of experimental and modeling progress, Chemical Engineering Science, 127 (2015) 401-417. [45] J. Gilron, A. Soffer, Knudsen diffusion in microporous carbon membranes with molecular sieving character, Journal of Membrane Science, 209 (2002) 339-352. [46] M. Mulder, Basic principles of membrane technology, Springer Science & Business Media, (1996). [47] M. Takht Ravanchi, T. Kaghazchi, A. Kargari, Application of membrane separation processes in petrochemical industry: a review, Desalination, 235 (2009) 199-244. [48] A. Dahi, K. Fatyeyeva, D. Langevin, C. Chappey, S.P. Rogalsky, O.P. Tarasyuk, A. Benamor, S. Marais, Supported ionic liquid membranes for water and volatile organic compounds separation: Sorption and permeation properties, Journal of Membrane Science, 458 (2014) 164-178. [49] R.E. Kesting, A. Fritzsche, Polymeric gas separation membranes, Wiley New York, (1993). [50] S. Rutherford, D. Do, Review of time lag permeation technique as a method for characterisation of porous media and membranes, Adsorption, 3 (1997) 283-312. [51] J. Koresh, A. Soffer, Study of molecular sieve carbons. Part 1.- Pore structure, gradual pore opening and mechanism of molecular sieving, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 76 (1980) 2457-2471. [52] H.-H. Tseng, P.-T. Shiu, Y.-S. Lin, Effect of mesoporous silica modification on the structure of hybrid carbon membrane for hydrogen separation, International journal of hydrogen energy, 36 (2011) 15352-15363. [53] Y. Huang, R. Dittmeyer, Preparation of thin palladium membranes on a porous support with rough surface, Journal of Membrane Science, 302 (2007) 160-170. [54] P. Kumar, J. Ida, S. Kim, V. Guliants, J. Lin, Ordered mesoporous membranes: Effects of support and surfactant removal conditions on membrane quality, Journal of Membrane Science, 279 (2006) 539-547. [55] C. Wang, X. Hu, J. Yu, L. Wei, Y. Huang, Intermediate gel coating on macroporous Al2O3 substrate for fabrication of thin carbon membranes, Ceramics International, 40 (2014) 10367-10373. [56] R. Singh, W.J. Koros, Carbon molecular sieve membrane performance tuning by dual temperature secondary oxygen doping (DTSOD), Journal of Membrane Science, 427 (2013) 472-478. [57] M. Kiyono, P.J. Williams, W.J. Koros, Effect of polymer precursors on carbon molecular sieve structure and separation performance properties, Carbon, 48 (2010) 4432-4441. [58] M. Kiyono, P.J. Williams, W.J. Koros, Effect of pyrolysis atmosphere on separation performance of carbon molecular sieve membranes, Journal of Membrane Science, 359 (2010) 2-10. [59] X. Ma, R. Swaidan, B. Teng, H. Tan, O. Salinas, E. Litwiller, Y. Han, I. Pinnau, Carbon molecular sieve gas separation membranes based on an intrinsically microporous polyimide precursor, Carbon, 62 (2013) 88-96. [60] H. Yang, Z. Xu, M. Fan, R. Gupta, R.B. Slimane, A.E. Bland, I. Wright, Progress in carbon dioxide separation and capture: A review, Journal of Environmental Sciences, 20 (2008) 14-27. [61] A.F. Ismail, L. David, A review on the latest development of carbon membranes for gas separation, Journal of membrane science, 193 (2001) 1-18. [62] Y. Kusuki, H. Shimazaki, N. Tanihara, S. Nakanishi, T. Yoshinaga, Gas permeation properties and characterization of asymmetric carbon membranes prepared by pyrolyzing asymmetric polyimide hollow fiber membrane, Journal of membrane science, 134 (1997) 245-253. [63] M. Kiyono, P.J. Williams, W.J. Koros, Effect of pyrolysis atmosphere on separation performance of carbon molecular sieve membranes, Journal of Membrane Science, 359 (2010) 2-10. [64] Y. Hirota, A. Ishikado, Y. Uchida, Y. Egashira, N. Nishiyama, Pore size control of microporous carbon membranes by post-synthesis activation and their use in a membrane reactor for dehydrogenation of methylcyclohexane, Journal of Membrane Science, 440 (2013) 134-139. [65] X. Yin, N. Chu, J. Yang, J. Wang, Z. Li, Thin zeolite T/carbon composite membranes supported on the porous alumina tubes for CO2 separation, International Journal of Greenhouse Gas Control, 15 (2013) 55-64. [66] J. Zhu, Y. Fan, N. Xu, Modified dip-coating method for preparation of pinhole-free ceramic membranes, Journal of Membrane Science, 367 (2011) 14-20. [67] F.Y. Ding Xiaobin, Xu Nanping, Effect of microstructure of supports and technological controllers of film coating in ceramic membrane thickness during dip coating process, Chemical Industry and Engineering (China), 57 (2006). [68] C. Hoogendam, J. Peters, R. Tuinier, A. De Keizer, M. Cohen Stuart, B. Bijsterbosch, Effective viscosity of polymer solutions: relation to the determination of the depletion thickness and thickness of the adsorbed layer of cellulose derivatives, Journal of colloid and interface science, 207 (1998) 309-316. [69] M.-Y. Wey, H.-H. Tseng, C.-k. Chiang, Improving the mechanical strength and gas separation performance of CMS membranes by simply sintering treatment of α-Al 2O3 support, Journal of Membrane Science, 453 (2014) 603-613. [70] H.-H. Tseng, K. Shih, P.-T. Shiu, M.-Y. Wey, Influence of support structure on the permeation behavior of polyetherimide-derived carbon molecular sieve composite membrane, Journal of Membrane Science, 405 (2012) 250-260. [71] Y.M. Luo, S.Q. Li, J. Chen, R.G. Wang, J.Q. Li, W. Pan, Effect of Composition on Properties of Alumina/Titanium Silicon Carbide Composites, Journal of the American Ceramic Society, 85 (2002) 3099-3101. [72] C.A. Handwerker, P.A. Morris, R.L. Coble, Effects of chemical inhomogeneities on grain growth and microstructure in Al2O3, Journal of the American Ceramic Society, 72 (1989) 130-136.
摘要: 管柱式碳分子篩選薄膜因易與觸媒整合且具有高比表面積、高氣體選擇率、優異的熱和化學穩定性,是適合應用在薄膜反應器中的膜材料。 浸塗法是最常被使用在製備管柱式薄膜的方法,此方法僅需將基材透過浸沒、浸滯、抽出、乾燥程序即可完成。然而,浸塗過程中,因受毛細作用力雖可使塗佈液滲入基材而達到修飾粗糙度的目的,但受重力、黏滯阻力的影響,會使薄膜下端膜厚增加,整體膜厚均勻度下降。 本研究利用真空輔助浸塗法來製備管柱式高分子薄膜,選用聚醚醯亞胺(Polyetherimide,PEI)作為高分子前趨物,N-甲基?咯酮(N-methyl-2-pyrrolidone,NMP)與三氯甲烷(Trichloromethane, TCM)作為溶劑,塗佈於多孔管柱式氧化鋁基材上,再藉由高溫裂解得到管柱式碳分子篩選薄膜。探討參數為:基材浸沒與抽出速度、真空輔助系統的影響、塗佈液組成、塗佈次數。 研究結果顯示,真空輔助系統能避免鑄膜液因毛細作用力而滲入基材孔隙,提升選擇層結構平整度;使用三氯甲烷作為溶劑能減緩塗佈液受重力影響,使薄膜整體膜厚值較為均ㄧ;最佳條件為塗佈液濃度10 wt.%、基材浸沒與抽出速度為1 mm/s、塗佈6次,其H2/N2及CO2/N2的選擇係數為8.8與6.7,H2的滲透率為464 Barrer、CO2的滲透率為356 Barrer。
Carbon molecular sieve (CMS) tubular membrane is regarded as the promising material for gas separation in membrane reactor due to its advantages such as can be combined with the catalyst easily, high specific surface area, high gas selectivity, and superior heat and chemical stability. Dip-coating is a common method for tubular membrane preparation. The process of dip-coating just includes immersion, retention, withdrawal, and drying steps. However, although the roughness of tubular membrane would be decrease by filling with casting solution through capillary force, the bottom width of tubular membrane would be increased owing to the gravity, resulting in decreased uniformity of membrane. In this study, the CMS tubular membranes were obtained by one step of vacuum-assisted dip-coating and pyrolysis procedure. Porous alumina tube was chosen as supporting material; polyethyleneimine (PEI) was chosen as membrane precursor; N-methyl-2-pyrrolidone (NMP) and Trichloromethane (TCM) were chosen as casting solutions. The effects of vertical immersion velocity, vertical withdrawal velocity, casting pressure, casting solution composition, and coating times on the membrane structure and gas separation performance were discussed in this study sequentially. The results indicated that coating membrane on the porous alumina tube surface by vacuum-assisted dip-coating method could enhance the flatness of CSM tubular membrane surface, resulting in higher gas pair selectivity. Moreover, using TCM as the casting solution could diminish the gravity force effect, resulting in uniform membrane thickness. When control the casting solution concentration = 10 wt.% (TCM as solvent); vertical immersion velocity and vertical withdrawal velocity = 1 mm/s; coating times = 6, the as-prepared CMS tubular membrane exhibited the best gas selectivity of H2/N2 =8.8 and CO2/N2 =6.7 and permeability of H2 464 Barrer and CO2 356 Barrer.
URI: http://hdl.handle.net/11455/91649
文章公開時間: 10000-01-01
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.