Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91652
標題: 以管柱型光反應器進行鍋爐燃燒煙道氣 CO2 再利用於微藻培養之研究
Utilization of boiler combustion flue gas CO2 on the microalgae cultivation with the photobioreactor
作者: Kai-Ti Pai
白凱棣
關鍵字: 微藻
二氧化碳再利用
光反應器
煙道氣
全球暖化
Microalgae
CO2 Utilization
photobioreactor
flue gas
Global warming
引用: Bai, Hsunling, and Jong-Hourm Wei. 'The CO2 mitigation options for the electric sector. A case study of Taiwan.' Energy Policy 24.3 (1996): 221-228. Belo, Isabel, Rita Pinheiro, and M. Mota. 'Fed‐Batch Cultivation of SaccharomycescerevisiaeinaHyperbaric Bioreactor.' Biotechnology progress 19.2 (2003): 665-671. Belo, Isabel, Rita Pinheiro, and M. Mota. 'Response of the thermophile Thermus sp. RQ-1 to hyperbaric air in batch and fed-batch cultivation.' Applied microbiology and biotechnology 53.5 (2000): 517-524. Binaghi, L., et al. 'Batch and fed-batch uptake of carbon dioxide bySpirulinaplatensis.' ProcessBiochemistry 38.9(2003): 1341-1346. Buitrón, Germán, et al. 'Evaluation of two control strategies for a sequencing batch reactor degrading high concentration peaks of 4-chlorophenol.' Water research39.6 (2005): 1015-1024. Dragone, Giuliano, et al. 'Third generation biofuels from microalgae.' (2010). Global CCS Institute, Accelerating The Uptake Of CCS: Industrial Use OfCapturedCarbonDioxide(2011). http://www.globalccsinstitute.com/resources/publications/accelerating-uptake-ccs-industrial-use-captured-carbon-dioxide HaoFeng, Gao, Li Huan, and Wei Ping. 'Reduction of biogas slurry and CO2 by Chlorella vulgaris in semi-continuous and continuous cultures.' Chinese Journal of Bioprocess Engineering 10.4 (2012): 16-20. Hartman, Jeffrey C., et al. 'Potential ecological impacts of switchgrass (Panicum virgatum) biofuel cultivation in the Central Great Plains, USA.'biomass and bioenergy 35.8 (2011): 3415-3421. IEA(International Energy Agency), Key World Energy Statistics, 2012 edition. IPCC Special Report on Carbon dioxide Capture and Storage (2005.09) Chapter 3 (CO2 Capture) and Chapter 8 (CCS Cost). http://www.ipcc.ch/activity/srccs/index.htm Paul,Jan,andClaire-MariePradier.'Carbondioxide chemistry.' International Symposium on CO Chemistry (1993: Hemavan, Sweden). Royal Society of Chemistry, 1994. Piorreck, Margret, Klaus-Hinnerk Baasch, and Peter Pohl. 'Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes.' Phytochemistry 23.2 (1984): 207-216. Prescott, L. M., J. P. Harley, and D. A. Klein. 'Microbial growth.' Microbiology, 6th ed. McGraw-Hill, New York, NY (2005): 109-132. Pual, J. and Pradier, C. M., Carbon Dioxide Chemistry: Environmental Issues. The Royal Society of Chemistry, Cambridge (UK), (1994) ISBN 0-85186-634-4, 405 pp. Rao, Anand B., and Edward S. Rubin. 'A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control.' Environmental Science & Technology 36.20 (2002): 4467-4475. Raven, John A., et al. 'Mechanistic interpretation of carbon isotope discrimination by marine macroalgae and seagrasses.' Functional Plant Biology 29.3 (2002): 355-378. Rittmann, Bruce E., and Perry L. McCarty. Environmental biotechnology. New York: McGraw Hill, 2001. Singh, Anoop, and Stig Irving Olsen. 'A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels.' Applied Energy 88.10 (2011): 3548-3555. Sobczuk, T. Mazzuca, et al. 'Carbon dioxide uptake efficiency by outdoor microalgalculturesintubularairlift photobioreactors.' Biotechnology and bioengineering 67.4 (2000): 465-475. Suen, Yu, et al. 'TOTAL LIPID PRODUCTION OF THE GREEN ALGA NANNOCHLOROPSIS SP. QII UNDER DIFFERENT NITROGEN REGIMES1.'Journal of Phycology 23.s2 (1987): 289-296. Takagi, M., et al. 'Limited feeding of potassium nitrate for intracellular lipid and triglyceride accumulation of Nannochloris sp. UTEX LB1999.' Applied microbiology and biotechnology 54.1 (2000): 112-117. Talbot, P., et al. 'A comparative study and mathematical modeling of temperature, light and growth of three microalgae potentially useful for wastewater treatment.'Water research 25.4 (1991): 465-472. Terry, Kenneth L., Edward A. Laws, and Deborah J. Burns. 'GROWTH RATE VARIATION IN THE N: P REQUIREMENT RATIO OF PHYTOPLANKTON1.'Journal of Phycology 21.2 (1985): 323-329. Ugwu, C. U., H. Aoyagi, and H. Uchiyama. 'Photobioreactors for mass cultivation of algae.' Bioresource technology 99.10 (2008): 4021-4028. Watson, Robert T., and Daniel Lee Albritton, eds. Climate change 2001: Synthesis report: Third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2001. Watson, Robert T., and Daniel Lee Albritton, eds. Climate change 2001: Synthesis report: Third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2001. Whitman,WalterG.'Thetwofilmtheoryofgas absorption.' International Journal of Heat and Mass Transfer 5.5 (1962): 429-433. Wilkinson, Peter M., Herman Haringa, and Laurent L. Van Dierendonck. 'Mass transfer and bubble size in a bubble column under pressure.' Chemical engineering science 49.9 (1994): 1417-1427. Wilkinson, Peter M., Herman Haringa, and Laurent L. Van Dierendonck. 'Mass transfer and bubble size in a bubble column under pressure.' Chemical engineering science 49.9 (1994): 1417-1427. Williams, J. P., and P. A. Merrilees. 'The removal of water and nonlipid contaminants from lipid extracts.' Lipids 5.4 (1970): 367-370. Wilson, E. J., and C. J. Geankoplis. 'Liquid mass transfer at very low Reynolds numbers in packed beds.' Industrial & Engineering Chemistry Fundamentals 5.1 (1966): 9-14. Zhang, Liping, Thomas Happe, and Anastasios Melis. 'Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga).' Planta 214.4 (2002): 552-561. Zhao, Bingtao, et al. 'Effect of cultivation mode on microalgal growth and CO2 fixation.' Chemical Engineering Research and Design 89.9 (2011): 1758-1762. 行政院環境保護署,水中鹼度檢測方法-滴定法,(92)環署檢字第0920085112 號公告,NIEA W449.00B。 李文哲,以高溫高鹼度環境培養微藻固定模擬吸收塔之吸收液中 CO2之研究,碩士論文,2006 年,國立成功大學環境工程學系,台南。 藍大鈞,藻類固定二氧化碳與藻體的利用研究,碩士論文,2001 年,長庚大學化學工程研究所,桃園。 蕭茂修,以海洋微藻固定 CO2 並作為生質能源之研究,碩士論文,2007 年,國立成功大學環境工程學系,台南。 行 政 院 環 境 保 護 署 , 排 放 量 跨 國 比 較 , 2013 年 01 月http://www.epa.gov.tw/index.aspx 高宜廷,新型光生化反應器之開發與其在單細胞藻類培養上之應用,2001 年,碩士論文,國立清華大學化學工程研究所,新竹。http://life.nthu.edu.tw/~labtcs/fei/data/phyto/2/Chlorella.htm。 經濟部能源局,我國燃料燃燒 CO2 排放統計與分析,2011 年 6 月。 黃定國,多重網狀導流板之氣舉式反應器的設計及其在幾丁聚糖生產上的應用,1999 年,碩士論文,國立清華大學化學工程學系,新竹。 黃毓涵,小球藻最適化連續式培養之研究,碩士論文,2009 年,國立成功大學化學工程學系,台南。 高千雅,建立一光生物反應系統用於微藻的高密度養殖與二氧化碳的減量,2009 年,碩士論文,國立交通大學生化工程研究所,新竹。 曾毓翎,後燃燒捕獲二氧化碳再利用於藻類培養之研究,2013 年,國立中興大學環境工程所,台中。 陳國誠,生化工程學,合記圖書,1985 年。
摘要: 本研究是以微藻對後煙道氣中之二氧化碳進行固碳培養之研究,模擬煙道氣中 CO2 吸收條件,探討微藻培養下 CO2 之吸收率及微藻生產率,並就反應器的 CO2 去除率進行討論。本研究針對兩部分進行探討:1.最適反應器操作條件求取,在批次搖瓶培養所得的最佳微藻生長環境下,利用連續曝氣 CO2 的方式,以批次及連續培養進行微藻大量培養,模擬實場煙道氣在不同 CO2 濃度、流量、壓力及微藻水力停留時間等操作條件下,微藻的產率及 CO2 去除率變化。2.以後煙道氣CO2 培養之藻類再利用評估,本研究配合實場研究計畫,於煙道氣環境下進行微藻培養,以反應器串聯的方式進行連續曝氣半批次培養,隨時間監控煙道氣 CO2 濃度、流量、壓力等,探討後煙道氣環境對微藻生長的影響及 CO2 利用情形。 培養環境控制於溫度 25℃及全光照 8000 Lux,且在連續流的曝氣操作下進行微藻固碳試程。本研究之小球藻,在批次培養試程下,於 20%CO2 濃度常壓下有著最高平均微藻產率 62 mg/L/day 及固碳速率 110 mg/L/day,CO2 去除率為 25-28%,碳源利用率為 30%;提升操作壓力後,微藻生長會有遲滯期延長的現象,培養 4 天後微藻開始快速生長,在操作壓力 2 kg/cm2 下 CO2 去除率有效提升至 42-45%,由於微藻生長與常壓條件相仿,碳源利用率小幅下降。而在連續培養試程下,於水力停留時間 4 天下平均微藻產率及固碳速率分別可提升至 90 mg/L/day 及 158 mg/L/day,CO2 去除率最高可提升至 48%,碳源利用率為 45%。而在實場燃煤鍋爐後煙道氣培養試程,微藻系統的CO2 去除率可達 90-99%,每日 CO2 去除總量最高可達 4.16 kg,微藻最高固碳速率為 163 mg/L/day。與前一年度批次供給碳源的研究結果相比,顯示改變反應器操作條件不只能有效提升 CO2 去除率,亦能提升小球藻之碳源利用率。
In this study, we designed a algae photobioreactor to capture the CO2 from the flue gas. Because of the acidity caused by high concentration CO2, we choose Chlorella sp. which can survive in this extreme environment. The purposes of this study have two. First, apply the best condition which resulting from the batch and continuous experiment for algae culture in a continuous aeration reactor. To obtain the optimal algae CO2 biofixation rate and CO2 removal efficiency under different operate condition, such as CO2 concentration, operating pressure, retention time. Second, evaluate the microalgae CO2 utilization efficiency in the real flue gas condition. Cultivation environment is control at temperature of 25 ℃ and 24 hr of illumination at 8000 Lux, and without of additional carbon source for algae culture except of CO2 under continuous aeration. In the different CO2 concentration test, the mean yield 62 mg/L/day and biofixation rate 110 mg/L/day are obtained at 20% CO2 areation, CO2 removal efficiency is 25 to 28%. In the operating pressure effect test, the reactor pressure at 1.5kg/cm2 show the highest CO2 removal efficiency is 42 to 45%. But mean yield is almost the same as the atmospheric condition, so the CO2 utilization has a little decrease. In the different retention time test, at retention time 4 day show the CO2 removal efficiency and CO2 utilization can increase to 48% and 45%. Mean yield and biofixation rate can reach 90 mg/L/day and 158 mg/L/day. In the field test which utilizes CO2 from the flue gas, show the 90-99% CO2 removal efficiency and 4.16 kg CO2 daily removal amount in algae system. Biofixation rate can reach 163 mg/L/day. Indicate that the flue gas CO2 fixation rate of Chlorella sp. can be improved under different reactor operating condition.
URI: http://hdl.handle.net/11455/91652
文章公開時間: 2018-07-15
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.