請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/91658
標題: 以過硫酸鈉強化電動力技術復育受雙酚A污染土壤之研究
Electrokinetic Remediation of Bisphenol A from Soil coupled with Sodium Persulfate
作者: Sin-Sheng Yin
關鍵字: 雙酚A
bisphenol A
sodium persulfate
引用: 6-1 中文參考文獻 (1)楊金鐘、林舜隆,“利用電動力法處理人工合成之鉛污染土壤”,第十一屆廢棄物處理技術研討會論文集,第 518-527 頁,臺北市,1996。 (2)凌永健(2000),環境荷爾蒙的化學分析,清華大學化學系,教授。 (3)吳建誼與丁望賢 (2000)環境荷爾蒙 - 壬基苯酚與雙酚A 在臺灣水環境中之分析與流布調查,行政院環保署。 (4)呂冠霖和司洪濤(2003),高濃度COD 廢水氧化處理技術評析,財團法人台灣產業服務基金會。 (5)賴冠君(2005),不同操作液對於電動力處理受鎘污染土壤效果之探討,國立中興大學環境工程學系,碩士論文。 (6)賈勝娟,楊春風,趙東勝(2008),Fenton氧化技術在廢水處理中的研究與應用進展,河北工業大學,天津,工業水處理,第28卷,第10期。 (7)莊忠霖(2008),利用過硫酸鹽氧化地下水中有機污染物,嘉南藥理科技大學環境工程與科學系,碩士學位。 (8)陳昌億(2010),以電化學地質氧化技術處理雙酚A 污染土壤之研究,國立高雄大學土木與環境工程系,碩士論文。 (9)顏丞凱、劉志忠和潘時正(2010),現地化學氧化法實場應用與案例探討,中 興工程顧問股份有限公司,桃園縣大學院校產業環保技術服務團環保簡訊。 (10)葉峮甫(2010),電動力法輔助奈米Fe3O4/S2O82-程序整治受TCE 及1,2-DCA 污染土壤。國立中山大學環境工程研究所,碩士論文。 (11)韓璐、王浩然、易小祺、胡錦英和張陽(2010),粒狀活性炭對水中雙酚A吸附性能的研究,瀋陽師範大學學報(自然科學版),第28卷,第4期。 (12)李中光、劉新校、陳昱峰、吳孟昌和劉佳雯(2011),Fenton氧化法在處理生物難降解有機廢水上之應用,萬能科技大學 環境工程系 ,桃園縣大學院校產業環保技術服務團環保簡訊。 (13)國家衛生研究院電子報(2012),世界衛生組織出版「2012內分泌干擾物科學報告」,第519期。 (14)蕭伊倫(2012),雙酚A錯了嗎?認識生活用品裡的化學物質,以及各國政府的管理策略。清華大學生醫工程與環境科學研究所,博士班。 (15)101年化學物質環保管制資訊電子報(2012),行政院環境保護署,第07期,共10頁。 (16)元智大學燃料電池中心,2013。 (17)魏海江、楊興倫、葉茂、王靜婷、卞永榮(2014),活化過硫酸鈉氧化法修復DDTs 污染場地土壤研究,土壤 (Soils), 46(3): 504–511。 6-2 英文參考文獻 (1)Acar,Y. B.and Alshawabkeh,A. N.(1993).Principles of electrokinetic remediation.Environment Science & Technology,Vol.27,pp. 2638–2647. (2)Acar,Y. B.,Gale,R. J.,Alshawabkeh,A. N.,Marks, R. E.,Mark,S. P.and Parker,B.R.(1995).Electrokinetic remediation: Basics and technology status.Journal of Hazardous Materials,Vol. 40,pp.117–137. (3)Aksoya, Y. Y. and Reddy, K. R.(2012). Effect of soil composition on electrokinetically enhanced persulfate oxidation ofpolychlorobiphenyls.Electrochimica Acta, Vol. 86, pp. 164–169. (4)Ahmadi,M.,Behin,J.and Mahnam,R.A.(2013).Kinetics and thermodynamics of peroxydisulfate oxidation of Reactive Yellow 84.Journal of Saudi Chemical Society. (5)Baraud,F., Tellier,S.and Astruc, M.(1999).Temperature effect on ionic transport during soil electrokinetic treatment at constant pH.Journal of Hazardous Materials,Vol. 64, pp.263–281. (6)Ball,R.E.,Chako, A., Edwards, J. O.and Levey, G.(2001).Mechanism of oxidation of nitrogen nucleophiles by peroxodisulfate ion: Nitrate ion and ammonia. Inorganica Chimica Acta, Vol. 99, pp.49–58. (7)Coletta, T.F., Bruell, C.J., Ryan, D.K. and Inyang, H.I.(1997). Cation-Enhanced Removal of Lead from Kaolinite by Electrokinetics. Journal of Environmental Engineering, Vol. 123, pp. 1227-1233. (8)Cauwenberghe, V. L.(1997).Electrokinetics: Technology OverviewReport. Groundwater Remediation Technologies Analysis,pp. 1-17. (9)Cui, Y. H., Li, X.Y. and Chen, G.(2009). Electrochemical degradation of bisphenol A on different anodes. Water Research, Vol. 43, pp. 1968-1976. (10)Cang, L.,Fan,G.P.,Zhou,D.M.and Wang, Q. Y.(2013). Enhanced-electrokinetic remediation of copper–pyrene co-contaminated soilwith different oxidants and pH control. Chemosphere,Vol.90, pp. 2326–2331. (11)FMC Corporation (2001). Persulfates Technical Information.FMC9487–2500 12/01 Burgess. (12)Ferrarese,E., Andreottola,G.and Oprea, I.A.(2008).Remediation of PAH-contaminated sediments by chemical oxidation. Journal of Hazardous Materials,Vol. 152, pp. 128–139. (13)Furman,O. S.,Teel,A. L. and Watts,R. J.(2010).Mechanism of Base Activation of Persulfate.Environmental Sciences. Technology,pp. 6423–6428. (14)Fan,G., Cang,L., Fang,G.and Zhou,D.(2014).Surfactant and oxidant enhanced electrokinetic remediation of a PCBs polluted soil.Separation and Purification Technology,Vol.123, pp. 106–113. (15)Gao,J., Luo,Q., Zhang,C., Li,B.and Meng, L.(2013). Enhanced electrokinetic removal of cadmium from sludge using a coupled catholyte circulation system with multilayer of anion exchange resin.Chemical Engineering Journal,Vol.234, pp. 1–8. (16)House,D. A.(1962).Kinetics and Mechanism of Oxidations by Peroxydisulfate, pp. 185–203. (17)Hamed,J. T.,and Bhadra,A.(1997). Influence of current density and pH on electrokinetics.Journal of Hazardous Materials, Vol. 55, pp.279–294. (18)Hahladakis, J. N., Lekkas, N., Smponias,A.and Gidarakos,E.(2014). Sequential application of chelating agents and innovative surfactants for the enhanced electroremediation of real sediments from toxic metals and PAHs.Chemosphere,Vol.105, pp. 44–52. (19)Jin, S. and Fallgren, P. H.(2010). Electrically induced reduction of trichloroethene in clay. Journal of Hazardous Materials, Vol.173, pp. 200-204. (20)Karagunduz, A., Gezer, A. and Karasuloglu, G.(2007). Surfactant enhanced electrokinetic remediation of DDT from soils. Science of The Total Environment, Vol. 385, pp. 1-11. (21)Kim,K.J., Kim,D.H., Yoo, J.C.and Baek,K.(2011).Electrokinetic extraction of heavy metals from dredged marine sediment.Separation and Purification Technology,Vol.79, pp.164–169. (22)Liang, C.J.,Wang,Z.S. and Bruell,C.J.(2007). Influence of pH inpersulfate oxidation of TCE at ambient temperatures,Chemosphere, 66, 106-113. (23)Lu, P., Feng,Q., Meng, Q. and Yuan,T.(2012). Electrokinetic remediation of chromium- and cadmium-contaminated soil from abandoned industrial site. Separation and Purification Technology,Vol. 98, pp. 216-220. (24)MacKinnon,L.K. and Thomson,N.R.(2002).Laboratory-scale in situ chemical oxidation of a perchloroethylene pool using permanganate.Journal of Contaminant Hydrology,Vol. 56, pp. 49–74. (25)Mendez,E.,Pérez, M.,Romero, O.,Beltrán,E.D., Castro,B. S.,Corona, J.L.,Corona,A.,Cuevas,M.C.and Bustos, E.(2012). Effects of electrode material on the efficiency of hydrocarbon removal by an electrokinetic remediation process.Electrochimica Acta,Vol. 86, pp. 148–156. (26)Oonnittan, A., Shrestha,R. A.and Sillanpaa,M.(2009).Removal of hexachlorobenzene from soil by electrokinetically enhanced chemical oxidation. Journal of Hazardous Materials,Vol. 162,pp. 989–993. (27)Peng, G., Tian, G., Liu, J., Bao, Q. and Zang, L.(2010).Removal of heavy metals from sewage sludge with a combination of bioleaching and electrokinetic remediation technology.Desalination, Vol. 271, pp. 100-104. (28)Pazos, M., Plaza, A., Martin, M. and Lobo, M. C.(2012). The impact of electrokinetic treatment on a loamy-sand soil properties. Chemical Engineering Journal, Vol. 183, pp. 231-237. (29)Peng,C.,Almeira,J.O. and Ahmed,A.S.(2013).Enhancement of ion migration in porous media by the use of varying electric fields. Separation and Purification Technology,Vol. 118,pp. 591–597. (30)Schuchmann, U. and Taylor, R. M.(1989). Iron Oxide in: Minerals in Soil Environments. Soil Sciences. (31)World Health Organization.(2002).GLOBAL ASSESSMENT SSESSMENT OF THE STATE-OF-THE-SCIENCE OF ENDOCRINE NDOCRINE DISRUPTORS. International Programme on Chemical Safety. (32)Virkutyte,J., Sillanp,M. and Latostenma,P.(2002).Electrokinetic soil remediation -critical overview.Science of The Total Environment,Vol. 289, pp.97–121. (33)Wu, Z., Ye, Q. and Cong, Y.(2005). Electrokinetic behavior of chlorinated phenols in soil and their electrochemical degradation. Process Safety and Environmental Protection, Vol. 83, pp. 178-183. (34)Wang, R., Ren, D.,Xia, S.,Zhang, Y. and Zhao, J.(2009).Photocatalytic degradation of Bisphenol A (BPA) using immobilized TiO2 and UV illumination in a horizontalcirculating bed photocatalytic reactor (HCBPR).Journal of Hazardous Materials,Vol. 169, pp. 926–932. (35)Yeung,A. T.,and Gu,Y.Y.(2011).A review on techniques to enhance electrochemical remediation of contaminated soils.Journal of Hazardous Materials,Vol. 195,pp.11–29. (36)Yeliz, Y.A.and Reddy, K. R.(2012).Effect of soil composition on electrokinetically enhanced persulfate oxidation ofpolychlorobiphenyls.Electrochimica Acta,Vol .86, 30,pp.164–169. (37)Yeo,M.,Berglund,K., Hanna,M., Guo,J. U., Kittur,J.,Torres,M. D.,Abramowitz,J., Busciglio,J.,Gao,Y.,Birnbaumer,L.and Liedtkea,W.B.(2012).Bisphenol A delays the perinatal chloride shift in cortical neurons by epigenetic effects on the Kcc2 promoter. Vol. 110,pp. 4315–4320. (38)Zeng,Y.,Li,B., Ma,W.,Zhou,K.,Fan,H.and Wang,H.(2011).Discussion on Current Pollution Status andLegislation of Environmental Hormone in China.Procedia Environmental Sciences,Vol. 11, Part C, pp. 1267–1277.
摘要: 在20世紀90年代,一些科學家提出,某些化學物質由於其結構與生理功能和人體或動物體內內分泌雌激素類似,可能會破壞其內分泌系統,因此稱其為「內分泌干擾素」(Endocrine disrupter,簡稱ED)。本實驗所使用之污染物為雙酚A,屬於工業用化合物,大多用於奶瓶、食品罐頭內膜、醫療儀器、家用電子產品等,其會隨者食物鏈之生物濃縮、放大等效應,經由攝食進入生物體內或市售之添加產品在使用過程中進入到人體與內分泌系統產生交互作用,造成自身免疫系統的疾病。 電動力整治技術為一種現地處理法,其優點之一為相較其他處理程序於低滲透土壤中,具有良好效果。過硫酸鈉為目前最常用於現地污染整治之氧化劑,所生成之過硫酸根離子(E0=2.01),還可生成硫酸根自由基(E0=2.5~2.6)氧化力僅略小於氫氧自由基(E0=2.8)。因此本研究將利用過硫酸鈉之氧化能力結合電動力法處理受雙酚A之低滲透土壤。 本研究架構分為兩個部分,第一部分為以氯化鎂作為電解液,探討氧化劑最佳添加位置,之後再以最佳添加位置,探討不同氧化劑濃度對去除雙酚A之影響。第二部分將改以氫氧化鈉為電解液,探討鹼性環境下是否氧化劑會受到添加位置的不同而造成去除成效的影響。首先Test 1~Test 3分別為無添加氧化劑、4.2 mM氧化劑添加於陽極槽和4.2 mM氧化劑添加於陰極槽。結果顯示固相移除率分別為18.9%、46.8%和76.9%,液相殘留率分別為2.38%、1.19%和4.04%,氧化去除率分別為17.8%、45.6%及73.8%。由液相殘留率可看出大部分的雙酚A都留在土讓中受到氧化劑的去除,除了對照組可能受到經由氯化鎂所生成之次氯酸根的氧化外其餘的組別以Test 3效果最好,因此在探討氧化劑濃度對雙酚A去除效益時都以添加至陰極槽為主。 之後的實驗中Test 4為氧化劑濃度調低至2.1 mM,Test 5則為調高至6.3 mM,結果顯示Test 4和Test 5之固相移除率分別為59.7%和65.8%,液相殘留率分別為5.65%和1.33%,氧化去除率分別為55.1%和65.8%。將氧化劑濃度調高有助於雙酚A的降解,徜若持續提高對於雙酚A之去除效益反而會受到限制。 最後改以氫氧化鈉為電解液,在實驗中Test 6為無添加氧化劑,Test 7及Test 8分別為4.2 mM氧化劑添加於陽極槽與陰極槽,結果顯示Test 6~Test 8之固相移除率分別為98.0%、92.6%及99.0%,液相殘留率為98.0%、75.9%及66.6%,氧化去除率分別為0%、17.0%及32.7%。對照組如此高的液相殘留率說明去除雙酚A大多僅做到「相」的轉移,雙酚A受到氧化劑去除的量不高,由於較高之電滲透流,使得氧化劑與雙酚A被沖至槽體外,因此雙酚A可能受到未活化之氧化劑降解。 整體來說以氯化鎂為電解液,將4.2 mM之氧化劑添加於陰極槽時雙酚A的去除率最好。以氫氧化鈉為電解液時能產生較高之電滲透流,被沖出槽體外之雙酚A大多受到未活化之氧化劑降解。以兩種不同之電解液,添加氧化劑處理受雙酚A污染之土壤,結果顯示氧化劑添加於陰極槽效果較佳。
In the 1990s, some researchers have found that there are some chemical substances similar to the biological hormones that may contaminate to human health and environment. These substances are collectively referred to as 'endocrine disruptors'. The contaminant used in the experiment is bisphenol A, which can be found in baby bottles, canned food endometrium, medical equipment and home electronics products. Electrokinetics is the most effective approach to recover pollutants from soils with low hydraulic conductivity. Persulfate anion (S2O8-) is a form of oxidant currently being used for in situ chemical oxidation (ISCO) remediation of organic contaminants. Persulfate has a redox potential of Eo = 2.01 V. In addition, sulfate radicals(E0 = 2.6 V) could be produced via electrolytic activation of persulfate anions, also remediation of organic contaminants. This study will add sodium persulfate to enhance electrokinetic to remove contaminants of BPA from soil. The study program would be divided into two parts. The first part used Magnesium chloride(MgCl2) as the electrolyte, in order to investigate the best injection pot of oxidant. And then impact of different oxidant concentration on the removal of bisphenol A was evaluated. The second part used sodium hydroxide(NaOH) as the electrolyte, in order to investigate whether the removal rate would be affected by adding oxidant in different injection pot in alkaline environmen. The First test group includes Test 1 to Test 3. Test 1 added no oxidizing agent; Test 2 added 4.2 mM oxidizing agent to the anode and in Test 3 to the cathode.The result shows that the removal rate from the solid phase in Test 1 to Test 3 were 18.9%, 46.8% and 76.9%, of liquid residual were 2.38%, 1.19% and 4.04%, respectively, that implies the removal rates due to oxidation were 17.8%, 45.6% and 73.8%. As could be seen most of bisphenol A are oxidized in the soil by the oxidant. Overall,Test 3 has the best removal and oxidation rates because the oxidant was added in the cathode. Therefore,various concentrations of the oxidant were added in the cathode for the second group test. In the second group, the oxidant concentration was 2.1 mM in Test 4 and it was raised to 6.3 mM in Test 5. The result shows that the removal rate from the solid phase in Test 4 and Test 5 were 59.7% and 65.8%, respectively, of liquid residual were 5.65% and 1.33%, that implies the removal rates due to oxidation were 55.1% and 65.8%. Therefore, the increase of oxidant concentration will did not improve the removal of bisphenol A. The third test group includes Test 6 to Test 8 using sodium hydroxide(NaOH) as the electrolyte. Test 6 added no oxidizing agent; Test 7 added 4.2 mM oxidizing agent to the anode and in Test 8 to the cathode, The result shows that the removal rate from the solid phase in Test 6 to Test 8 were 98.0%, 92.6% and 99.0%, of liquid residual were 98.0%, 75.9% and 66.6%, respectively, that implies the removal rates due to oxidation were 0%, 17.0% and 32.7%. Because of the high electroosmotic flow, such that the oxidizing agent and bisphenol A rapidly flushed out of the system, therefore, bisphenol A has no time to be degraded by the oxidant. Overall, Magnesium chloride (MgCl2) as the electrolyte, can achieve the best removal of bisphenol A by adding 4.2 mM of oxidizing agent in the cathode slots. When sodium hydroxide(NaOH) as the electrolyte can produce a higher electroosmotic flow, causing the highest removal rate of bisphenol A from the soil. The comparison of the two different electrolytes, with the addition of an oxidant to treat soil contaminated by bisphenol A, indicates that the oxidant increase the remediation efficiency by four folds.
URI: http://hdl.handle.net/11455/91658
文章公開時間: 2018-06-25

檔案 大小格式 
nchu-104-7102063019-1.pdf1.76 MBAdobe PDF檢視/開啟

在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。