請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/91664
標題: 上流式厭氧污泥床結合藻類反應槽處理生活污水之研究
A study of UASB combined with an algae reactor for treating domestic wastewaters
作者: Hsiu-Ling Lin
林秀玲
關鍵字: 上流式厭氧污泥床
藻類反應槽
除氮除磷
低濃度污水
生活污水
UASB (up-flow anaerobic sludge blanket)
algae reactor
ammonia and phosphorous removal
low strength wastewater
domestic wastewater
引用: 胡慶祥,「上流式厭氧污泥床之快速起動」,碩士論文,私立中國文化大學生物科技研究所,台北,(1991)。 李銘益, 「二階段厭氧流體化薄膜生物反應槽在自然溫度下處理生活污水效率之研究」,碩士論文,國立交通大學環境工程研究所,新竹,(2013)。 Abdel-Raouf, N., Al-Homaidan, A. A., Ibraheem, I. B. M. (2012) 'Microalgae and wastewater treatment.' Saudi Journal of Biological Sciences 19 (3): 257-275. Alphenaar, P. A., Visser, A., Lettinga, G. (1993) 'The Effect of Liquid Upward Velocity and Hydraulic Retention Time on Granulation in UASB Reactor Treating Wastewater with a High Sulphate Content.' Bioresource Technology 43: 249-258. Alphenaar, P. A., Sleyster, R., Lettinga, G. (1994) 'The Effect of Wasterwater Pre-acidfication on UASB Reactors Performance. In Anaerobic Granular Sludge:Characterization, and Factors Affecting its Functioning.' Alphebaar, PhD Thesis, Wageningen University, Wageningen, Dutch: 93-112. Alvarez, J. A., Ruiz, I., Gomez, M., Presas, J., Soto, M. (2006) 'Start-up alternatives andperformance of an UASB pilot plant treating diluted municipal wastewater at low temperature.' Bioresource Technology 97:1640–1649. Aslan, S., Kapdan, I. K. (2006) 'Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae.' Ecological Engineering 28 (1): 64-70. Benemann, J. R. (2003) 'Biofixation of CO2 and greenhouse gas abatement with microalgae – technology roadmap.' Prepared for the U.S. Department of Energy National Energy Technology Laboratory, No. 7010000926. Blier, R., Laliberte, G., de la Noϋe, J. (1995) 'Tertiary treatment of cheese factory anaerobic effluent with Phormidium bohneri and Micractinium pusillum.' Bioresource Technology 52 (2): 151–155. Borowitzka, M. A., Borowitzka, L. J. (1988) Microalgal Biotechnology Cambridge Univ. Press, Cambridge. Cabirol, N., Barragán, E. J., Durán, A., Noyola, A. (2003) 'Effect of aluminium and sulphate on anaerobic digestion of sludge from wastewater enhanced primary treatment.' Water Science & Technology 48 (6): 235–240 Cai, X. H., Traina, S. T., Logan, S. J., Gustafson, T., Sayre, R. T. (1995) 'Applications of eukaryotic algae for the removal of heavy metals from water.' Molecular Marine Biology and Biotechnology 4 (4): 338–344. Cho, S. K., Kim, D. H., Kim, M. H., Shin, H. S., Oh, S. E. (2012) 'Enhanced activity of methanogenic granules by low-strength ultrasonication.' Bioresource Technology 120 : 84-88. Christenson, L., Sims, R. (2011) 'Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts.' Biotechnology Advances 29 (6): 686-702. Clair, S., McCarty, P. L., Gene, P. (2002) Chemistry for Environmental Engineering and Science. (fifth edition) McGraw-Hill Education Book Co. Collos, Y., Berges, J. A. (2004) Nitrogen Metabolism in Phytoplankton. Oxford: Encyclopedia of Life Support Systems (EOLSS) Cooke, M. B., Thackston, E. L., Malaney, G. W.(1978) 'Reduction coliform and Salmonella bacteria during anaerobic digestion.' Water Sew Works: 50–54. Craggs, R. J. (2005) 'Advanced integrated wastewater ponds. In: Shilton, A. (ed), Pond Treatment Technology.' IWA Scientific and Technical Report Series, IWA, London, UK, pp. 282–310. Cresswell, R. C., Rees, T. A. V., Shah, N. (1989) Algal and Cyanobacterial Biotechnology. Longman Higher Education. de la Noϋe, J., de Pauw, N. (1988) 'The potential of microalgal biotechnology. A review of production and uses of microalgae.' Biotechnology Advances 6: 725–770. de la Noϋe, J., Proulx, D. (1988) 'Tertiary treatment of urban wastewater by chitosan-immobilized Phormidium sp.' In: Stadler, T., Mollion, J., Verdus, M.C., Kamaranos, Y., Morvan, H., Christaien, D. (Eds.), Algal Biotechnology. Elsevier Applied Science, New York, pp. 159–168. de Man, A. W. A., Grin, P. C., Roersma, R. E., Grolle, K. C. F., Lettinga, G. (1986) 'Anaerobic Treatment of Municipal Wasterwater at Low Temperatures.' Anaerobic treatment. A grown-up technology. Conference papers (Aquatech ’86), Amsterdam: 451-466. de Pauw, N., van Vaerenbergh, E. (1983) 'Microalgal wastewater treatment systems: Potentials and limits.' In: Ghette, P.F. (Ed.), Phytodepuration and the Employment of the Biomass Produced. Centro Ric. Produz, Animali, Reggio Emilia, Italy, pp. 211–287. Draaijer, H., Maas, J. A. W., Schaapman, J. E., Khan, A. (1992) 'Performance of the 5-MLD UASB reactor for sewage treatment at Kanpur India.' Water Science & Technology 25 (7): 123–133. Erganshev, A. E., Tajiev, S. H. (1986) 'Seasonal variations of phytoplankton in a Series of Waste Treatment Lagoons (Chimkent, Central Asia) Part 2: Distribution of Phytoplankton Numbers and Biomass.' Acta Hydrochimica et Hydrobiologia 14 (6): 613–625. Fall, E. B., Krauss, L. S. (1961) 'The Anaerobic Contact Process in Practice.' Journal Water Pollution Control Federation 33 (10): 1038-1046. Florencio, L., Kato, M. T., de Morais, J. C.(2001) 'Domestic sewage treatment in full-scale UASB plant at Mangueira, Recife, Pernambuco.' Water Science & Technology 44 (4): 71–77. Garcia, J., Mujeriego, R., Hernandez-Marine, M. (2000) 'High rate algal pond operating strategies for urban wastewater nitrogen removal.' Journal of Applied Phycology 12: 331–9. Goldman, J. (1979) 'Outdoor algal mass cultures-I. Applications.' Water Research 13 (1): 1–19. Gray, N. F. (1989) Biology of Wastewater Treatment. Oxford University Press. Hashimoto, S., Furukawa, K. (1989) 'Nutrient removal from secondary effluent by filamentous algae.' Journal of Fermentation and Bioengineering. 67(1): 62–69. Ho, J. H., Khanal, S. K., Sung, S. W. (2007) 'Anaerobic membrane bioreactor for treatment of synthetic municipal wastewater at ambient temperature.' Water Science & Technology 55 (7): 79-86. Horan, N. J. (1990) Biological Wastewater Treatment Systems. Theory and operation. John Wiley & Sons Ltd. Ibraheem, I. B. M. (1995) Phytochemical studies on some common algae of El-Sukhna and Abu-Qir Gulf. M.Sc. Thesis, Al-Azhar University, Faculty of Commerce - Males ( Cairo ), Egypt. Jewell, W. J., Switzenbaum, M. S., Morris, J. W. (1981) 'Municipal wastewater treatment with the anaerobic attached microbial film expanded bed process.' J. Water Pollut. Control Fed. 53 (4): 483–490. Kaplan, D., Christiaen, D., Arad, S. (1988) 'Binding of heavy metals by algal polysaccharides.' In: Stadler, T., Mollion, J., Verdus, M.C., Karamanos, Y., Morvan, H., Christiaen, D. (Eds.), Algal Biotechnology, Elsevier Applied Science, London, pp. 179–187. Kato, M. T., Field, J. A., Versteeg, P., Lettinga, G. (1994) 'Feasibility of expanded granular sludge bed reactors for the anaerobic treatment of low-strength soluble wastewaters.' Biotechnology and Bioengineering 44 (4): 469-479. Kato, M. T., Field, J. A., Lettinga, G. (1997) 'The Anaerobic Treatment of Low Strength Wastewater in UASB and EGSB Reactor.' Water Science & Technology 36: 375-382. Kong, Q.-x., Li, L., Martinez, B., Chen, P., Ruan, R. (2010) 'Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production.' Applied Biochemistry and Biotechnology 160: 9–18. Lavoie, A., de la Noϋe, J. (1983) 'Harvesting microalgae with chitosan.' Journal of the World Mariculture Society 14 (1-4): 685–694. Lavoie, A., de la Noϋe, J. (1985) 'Hyperconcentrated cultures of Scenedesmus obliquus. A new approach for wastewater biological tertiary treatment?' Water Research 19 (11): 1437–1442. Lettinga, G., Field, J., van Lier, J. B., Zeeman, G., Hulshoff Pol, L. W. (1997) 'Advanced anaerobic wastewater treatment in the near future.' Water Science & Technology 35 (10): 5-12. Lew, B., Lustig, I., Beliavski, M., Tarre, S., Green, M. (2011) 'An integrated UASB-sludge digester system for raw domestic wastewater treatment in temperate climates.' Bioresource Technology 102 (7): 4921-4924. Lim, S., Chu, W., Phang, S., (2010) 'Use of Chlorella vulgaris for bioremediation of textile wastewater.' Bioresource Technology 101 (19): 7314–7322. Luo, J., Qian, G., Liu, J., Xu, Z. P. (2015) 'Anaerobic methanogenesis of fresh leachate from municipal solid waste: A brief review on current progress.' Renewable and Sustainable Energy Reviews 49: 21-28. Maestrini, S. Y., Robert, J. M , Leftley, J. W., Collos, Y. (1986) 'Ammonium thresholds for simultaneous uptake of ammonium and nitrate by oyster-pond algae.' Journal of Experimental Marine Biology and Ecology 102: 75–98. Mahmoud, M., Tawfik, A., El-Gohary, F. (2011) 'Use of down-flow hanging sponge (DHS) reactor as a promising post-treatment system for municipal wastewater.' Chemical Engineering Journal 168 (2): 535–543. Mara, D. D., Pearson, H. (1986) 'Artificial freshwater environment: waste stabilization ponds.' In: Rehm, H.-J., Reed, G. (Eds.), Biotechnology 8: 177–206. McCarty, P. L., Bae, J., Kim, J. (2011) 'Domestic Wastewater Treatment as a Net Energy Producer - Can This be Achieved?' Environmental Science & Technology 45 (17): 7100-7106. Madigan, M. T., Martinko, J. M., Stahl, D., Clark, D. P. (2010) Brock Biology of Microorganisms. (13th Edition) Benjamin Cummings. Moawad, S. K. (1968) 'Inhibition of coliform bacteria by algal population in microoxidation ponds.' Environmental Health 10: 106–112. Mohamed, N. A. (1994) 'Application of algal ponds for wastewater treatment and algal production.' M.Sc. Thesis, Fac.of Sci. (Cairo Univ.) Bani-Sweef Branch. Moon, N. S., Frolov, M. V., Kwon, E. J., Di Stefano, L., Dimova, D. K., Morris, E. J., Taylor-Harding, B., White, K., Dyson, N. J. (2005) 'Drosophila E2F1 has context-specific pro- and antiapoptotic properties during development.' Developmental Cell 9 (4): 463-475. Morales, J., de la Noϋe, J., Picard, G. (1985) 'Harvesting marine microalgae species by chitosan flocculation.' Aquacultural Engineering 4: 257– 270. Moreno, A., Rueda, O., Cabrera, E., Luna-del-Castillo, J. D. (1990) 'Standarization in wastewater biomass growth.' Ig. Mod. 94 (1): 24–32. Mungray, A. K., Murthy, Z. V. P., Tirpude, A. J. (2010) 'Post treatment of up-flow anaerobic sludge blanket based sewage treatment plant effluents: A review.' Desalination and Water Treatment 22 (1-3): 220-237. Omil, F., Lens, P., Hulshoff Pol, L., Lettinga, G. (1996) 'Effect of Upward Velocity and Sulphide Concentration on Volatile Fatty Acid Degradation in a Sulphidogenic Granular Sludge Reactor. ' Process Biochemistry 31: 699-710. Oswald, W. J., Gotaas, H. B. (1957) 'Photosynthesis in sewage treatment.' Trans. Am. Soc. Civil. Eng. 122: 73–105. Park, J. B. K., Craggs, R. J. (2010) 'Wastewater treatment and algal production in high rate algal ponds with carbon dioxide addition.' Water Science & Technology 61: 633–639. Palmer, C. M. (1969) 'A composite rating of algae tolerating organic pollution.' Journal Phycology 5: 78–82. Pulz, O. (2001) 'Photobioreactors: production systems for phototrophic microorganisms. ' Applied Microbiology and Biotechnology 57: 287–293. Renaud, S. M., Parry, D. L., Thinh, L. V.(1994) 'Microalgae for use in tropical aquaculture. I:Gross chemical and fatty acid composition of twelve species of microalgae from the Northern Territory, Australia.' Journal Applied Phycology 6 (3): 337–345. Richmond, A. (1986) Handbook of microalgal mass culture. CRC Press, Boca Raton, Florida: 528. Richmond, A. (2004) 'Principles for attaining maximal microalgal productivity in photobioreactors: an overview.' Hydrobiologia 512: 33–37. Rincón, B., Borja, R., Martín, M. A., Martín, A. (2010) 'Kinetic study of the methanogenic step of a two-stage anaerobic digestion process treating olive oil mill solid residue.' Chemical Engineering Journal 160 (1): 215-219. Rittmann, B. E., McCarty, P. L. (2002) Environmental Biotechnology: Principles and Applications. International Editioned, Singapore: McGraw-Hill Book Co. Sam-Soon, P. A. L. N. S., Loewenthal, R. E., Wentzel, M. C., Marais, Gv. R. (1986). 'Pelletization in the Upflow Anaerobic Sludge Bed (UASB) Reactor.' Research Report W72, Dept. Civil Eng., Univ. of Cape Town, Rondebosch 7701, South Africa. Sawayama, S., Rao, K. K., Hall, D. O. (1998) 'Nitrate and phosphate ions removal from water by Phormidium laminosum immobilized on hollow fibres in a photobioreactor.' Applied Microbiology and Biotechnology 49: 463–468. Sebastian, S., Nair, K. V. K. (1984) 'Total removal of coliforms and E. coli from domestic sewage by high-rate pond mass culture of Scenedesmus obliquus.' Environmental Pollution (Series A) 34: 197–206. Seghezzo, L., Zeeman, G., van Lier, J. B., Hamelers, H. V. M., Lettinga, G. (1998) 'A Review:The Anaerobic Treatment of Sewage in UASB and EGSB Reactors.' Bioresource Technology 65: 175-190. Simpson, D. E. (1971) 'Investigations on a pilot-plant contact digester for the treatment of a dilute urban waste'. Water Research 5 (8): 523-532. Shelef, G., Soeder, C. J. (1980) Algal Biomass: production and use. Elsevier/North Holland Biomedical Press, Amsterdam, p 852. Shelef, G., Moraine, R., Sandback, E. (1977) 'Combined algae production wastewater treatment and reclamation systems. In: Schlegel, H.G., Barnea, J. (Eds.), Microbial Energy Conversion. Pergamon Press, West Germany, pp. 427–442. Shin, C., Bae, J., McCarty, P. L. (2012). 'Lower operational limits to volatile fatty acid degradation with dilute wastewaters in an anaerobic fluidized bed reactor.' Bioresource Technology 109: 13-20. Soeder, C.J., Hegewald, E., Fiolitakis, E., Grobbelaar, J. U. (1985) 'Temperature dependence of population growth in a green microalga: thermodynamic characteristics of growth intensity and the influence of cell concentration.' Zeitschrift für Naturforschung C. 40 (3-4): 227–233. Souza, M. E. (1986) 'Criteria for the Utilization, Design and Operation of UASB Reactors.' Water Science & Technology 18 (12): 55-69. Speece, R. E. (1995) Anaerobic Biotchnology, Archae Press, Tennessee, 143-154. Stadler, T., Mollion, J., Verdus, M-C., Karamanos, Y., Morvan, H., Christiaen, D. (1988) Algal Biotechnology. Elsevier Applied Science, England. Stumm, W., Morgan, J. J. (1981) Aquatic chemistry: an introduction emphasizing chemical equilibria in natural waters. Wiley-Interscience. Sumino, H., Takahashi, M., Yamaguchi, T., Abe, K., Araki, N., Yamazaki, S., Shimozaki, S., Nagano, A., Nishio, N. (2007) 'Feasibility study of a pilot-scale sewage treatment system combining an up-flow anaerobic sludge blanket (UASB) and an aerated fixed bed (AFB) reactor at ambient temperature.' Bioresource Technology 98: 177–182. Takahashi, M., Yamaguchi, T., Kuramoto, Y., Nagano, A., Shimozaki, S., Sumino, H., Araki, N., Yamazaki, S., Kawakami, S., Harada, H. (2011) 'Performance of a pilot-scale sewage treatment: An up-flow anaerobic sludge blanket (UASB) and a down-flow hanging sponge (DHS) reactors combined system by sulfur-redox reaction process under low-temperature conditions.' Bioresource Technology 102 (2): 753-757. Tebbutt, T. H. Y. (1983) Principles of water quality control. Pergammon Press, Oxford. Talbot, P., de la Noϋe, J. (1993) 'Tertiary treatment of wastewater with Phormidium bohneri (Schmidle) under various light and temperature conditions.' Water Research 27 (1), 153–159. Torzillo, G., Pushparaj, B., Masojidek, J., Vonshak, A. (2003) 'Biological constraints in algal biotechnology.' Biotechnology and Bioprocess Engineering 8: 338–348. van der Last, A. R. M., Lettinga, G. (1992) 'Anaerobic Treatment of Domestic Sewage under Moderate Climatic(Dutch) Conditions Using Upflow Reactors at increased Superfical Velocities.' Water Science & Technology 25:167-178. Van Haandel, A. C., Lettinga, G. (1994) Anaerobic Sewage Treatment: A Practical Guide for Regions with a Hot Climate. J. Wiley & Sons Ltd, Chichester, England Wang, Z., Banks, C. J. (2006) 'Report: Anaerobic digestion of a sulphate-rich high-strength landfill leachate: the effect of differential dosing with FeCl3.' Waste Management & Research 24(3): 289-293 Wang, Z., Banks, C. J. (2007) 'Treatment of a high-strength sulphate-rich alkaline leachate using an anaerobic filter.' Waste Management & Research 27(3): 359-366. Yilmaz, T., Erdirencelebi, D., Berktay, A.. (2012) 'Effect of COD/SO42- ratio on anaerobic treatment of landfill leachate during the start-up period.' Environmental Technology 33 (3): 313–320. Zakkour, P. D., Gaterell, M. R., Griffin, P., Gochin, R. J., Lester, J. N. (2001) 'Anaerobic treatment of domestic wastewater in temperate climates: Treatment plant modelling with economic considerations.' Water Research 35 (17): 4137-4149. http://sewagework.cpami.gov.tw/report/ChartReportYear.aspx 內政部營建署全國公共污水處理廠資料管理系統-年資料分析 https://www.mwrd.org/irj/portal/anonymous/Home http://clui.org/ludb/site/deer-island-sewage-treatment-plant
摘要: 長期以來,生活污水與中低濃度的可生物分解性廢污水主要採用生物好氧工法來處理,或結合部分缺氧、厭氧程序加強去除氮磷;然而好氧生物工法佔地面積大、建設成本高、大量耗用曝氣動力、同時產生大量廢棄污泥。處理污水問題的同時衍生許多二次污染,並不符合近年來追求資源回收與環境永續發展的理念。 本研究以高效率厭氧結合藻類槽的系統來取代傳統好氧工法。厭氧工法無須曝氣動力、佔地面積小、建設成本低,淨化污水的同時將含碳有機物轉換為二氧化碳和甲烷,大幅減少污泥產量。厭氧出流水後續串聯藻類處理系統,並導入厭氧產生的二氧化碳來促進藻類光合作用與生長,達到充分的碳、氮、磷去除與回收。 本研究實驗分兩階段,探討不同濃度的進流污水對系統之影響。處理系統為上流式厭氧污泥床 (Up-flow Anaerobic Sludge Blanket, UASB) 與藻類反應槽 (Algae reactor) 串聯。實驗第一階段平均進流 COD濃度為 465 mg L-1,經HRT為 8 小時的厭氧槽和32小時的藻類反應槽,出流水平均COD濃度為 38.3 mg L-1,總平均COD去除率為 92%;氨氮、磷平均去除率各約為 47% 和 45%。第二階段平均進流 COD 濃度為 227 mg L-1,經HRT為 8 小時的厭氧槽和72小時的藻類反應槽,出流水平均COD濃度為 14.0 mg L-1,總平均COD去除率為 94%;氨氮和磷平均去除率各為 81% 和 14%。 由實驗結果可以驗證,以上流式厭氧污泥床結合藻類槽來處理中低濃度污水,其效果顯著,系統節省動力且運作穩定,處理後之碳氮磷皆能回收再利用,故此串聯系統未來具有相當的價值與可行性。
Traditionally, low strength wastewater and domestic wastewater have been treated with aerobic processes. However, aerobic processes have several drawbacks, such as high land area required, high construction and operation cost, large energy consumption for aeration, and the considerable amount of waste sludge generated. Solving environmental problems but also generating others would be considered as infringement the spirit of recycling and sustainable using in today’s world. This research focused on a combined system containing a high-rate anaerobic and an algae reactor in replace of the traditional aerobic process. Anaerobic process has the advantage of reducing high energy consumption on aeration unit and has the ability to transfer organic pollutions into methane and carbon dioxide. Therefore, anaerobic systems could reduce wasted sludge generation. Also the anaerobic-generated carbon dioxide can also be re-utilized as the C-source to enhance the algae growth. The photosynthesis and growth of algae can achieve the simultaneous removal of carbon, nitrogen, and phosphorate through algae harvesting. The system was the combination of an UASB (Up-flow Anaerobic Sludge Blanket) and an algae reactor. During the first stage, the average influent COD concentration was 465 mg L-1. The average effluent COD was 38.3 mg L-1 with the combination of an UASB at HRT of 8 hrs and an algae reactor at HRT of 32 hrs. The average removal efficiency of COD, NH4+-N and PO4-3 were 92%, 47% and 45%, respectively. During the second stage, average influent and effluent COD concentration were 227 mg L-1 and 14.0 mg L-1, respectively. The system was operated with an UASB at HRT of 8 hrs and an algae reactor at HRT of 72 hrs. The removal efficiency of COD, NH4+-N and PO4-3 were 94%, 81% and 14%, respectively. The results demonstrated the UASB-algae combined system was not only efficient in treating low strength wastewaters but also has features of energy saving and excellent operation stability. The combined system showed the feasibility of simultaneous achievement in wastewater treatment and nutrients recovery.
URI: http://hdl.handle.net/11455/91664
文章公開時間: 2015-07-20
顯示於類別:環境工程學系所

文件中的檔案:
檔案 大小格式 
nchu-104-7101063027-1.pdf3.03 MBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。