請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/91708
標題: 二氧化氯之電解製備及其應用於改善養殖水體之研究
Chlorine dioxide generation by electrolytic process and its applicability on the improvement of aquaculture water
作者: Yi-Tze Tsai
關鍵字: 二氧化氯
chlorine dioxide
membrane electrolysis
mixed chlorine dioxide
引用: Aieta E.M., Roberts P.V. and Hernandez M., (1984), Determination of chlorine dioxide, chlorine, chlorite and chlorate in water, J. AWWA., Vol. 76, pp. 64-70. Aieta E.M. and Berg J.D., (1986), A review of chlorine dioxide in drinking water treatment, J. AWWA., Vol. 78, pp. 62-71. Akin E.W., Hoff J.C., Lipp Hoff J.G., Lalezary S., Pirbazari M. and McGuire M.J., (1984), Oxidation of taste and odor compounds, AWWA Ann., Conf., Dallas, Texas. Al-Haq M.I., Sugiyama J. and Isobe S., (2005), Applications of electrolyzed water in agriculture & food industries, Food Sci. Technol. Res., Vol. 11, pp. 135-150. Anat K. and Narkis N., (1994), Disinfection of effluent by combinations of equal doses of chlorine dioxide and chlorine added simultaneously over arying contact time, Water Res., Vol. 28, pp. 2133-2138. AWWA (American Water Works Association), (1986), Chlorination by-products: production and control, AWWA Res. Fdn., Denver, Co. AWWA, (1990), Water Quality and Treatment, fourth edition, McGraw-Hill, Inc., New York, NY. Bellar T.A., Lichtenberg J.J. and Korner R.C., (1974), The occurrence of organohalids in chlorinated drinking water, J. AWWA., Vol. 66, pp. 703-706. Bergmann H. and Koparal S., (2005), The formation of chlorine dioxide in the electrochemical treatment of drinking water for disinfection, Electrochim. Acta., Vol. 50, pp. 5218-5228. Bull R.J. and Kopfler F.C., (1991), Health effect of disinfectants and disinfection by-products, AWWA Res. Fdn., Denver, Co. Chang C.Y., Hsieh Y.H., Hsu S.S., Hu P.Y. and Wang K.H., (2000), The formation of disinfection by-products in water treated with chlorine dioxide, J. Hazard. Mater., Vol. 79, pp. 89-102. Chen Y.S.R., Sproul O.J. and Rubin A.J., (1984), Inactivation of Naegleria Gruberi cysts by chlorine dioxide, EPA Grant R808150-02-0, Department of Civil Engineering, Ohio State University. Chen Z., Zhu C. and Han Z., (2011), Effects of aqueous chlorine dioxide treatment on nutritional components and shelf-life of mulberry fruit (Morus alba L.), J. Biosci. Bioeng., Vol. 111, pp. 675-681. Colt J.E. and Armstrong D.A., (1981), Nitrogen toxicity to crustaceans, fish and molluses, Proceeding of the Bio-Engineering Symposium for Culture, Bethesda, American Fisheries Society. Condie L.W., (1986), Toxicological problems associates with chlorine dioxide, J. AWWA., Vol. 78, pp. 156-162. Craun G.F., Bull R.J., Clark R.M., Doull J., Grabow W., Marsh G.M., Okun D.A., Regli S., Sobsey M.D. and Symons J.M., (1994), Balancing chemical and microbial risks of drinking water disinfection, Part I. Benefits and potential risks, J. Water SRT-Aqua., Vol. 43, pp. 192-199. Deshwal B.R., Jo H.D. and Lee H.K., (2004), Reaction kinetics of decomposition of acidic sodium chlorite, Can. J. Chem. Eng., Vol. 82, pp. 619-623. Deshwal B.R. and Lee H.K., (2005), Manufacture of chlorine dioxide from sodium chlorate: state of the art, J. Ind. Eng. Chem., Vol. 11, pp. 330-346. Ehl R.G. and Ihde A.J., (1954), Faraday’s electrochemical laws and the determination of equivalent weights, J. Chem. Educ., Vol. 31, pp. 226-232. Emerson K., Russo R., Lund R. and Thurston R., (1975), Aqueous ammonia equilibrium calculations: effects of pH and temperature, J. Fish. Res. Board Can., Vol. 32, pp. 2379-2383. Frascella J., Gilbert R., Fernandez P. and Hendler J., (2000), Efficacy of a chlorine dioxide –containing mouthrinse in oral malodor, Compend. Contin. Educ. Dent., Vol. 21, pp. 241-244. Freese S.D. and Knobel G.D., (1995), Chlorine dioxide: problems of analyses, Water Supply, Vol. 13, pp. 83-92. Gagnon G.A., Rand J.L., O’Leary K.C., Rygel A.C., Chauret C. and Andrews R.C., (2005), Disinfectant efficacy of chlorite and chlorine dioxide in drinkingwater biofilms, Water Res., Vol. 39, pp. 1809-1817. Ghanbari H.A., Wheeler W.B. and Kirk J.R., (1982), Reactions of aqueous chlorine and chlorine dioxide with lipids: chlorine incoration, J. Food Sci., Vol. 47, pp. 482-485. Glaze W.H., Schep R., Chauncey W., Ruth E. C., Zarnoch J. J., Aieta E.M., Tate C.H. and McGuire M.J., (1990), Evaluating oxidants for the removal of model taste and odor compounds from a municipal watersupply, J. AWWA., pp. 79-84. Goel S.H., Raymond M. and Edward J.B., (1995), Evaluating oxidants for the removal of model taste and odor compounds from a municipal water supply, J. AWWA., Vol. 85, pp. 90-105. Gordon G., Bregt S., Satoshi T. and Delmer W.W., (1990), Minimizing chlorite ion and chlorate ion in water treated with chlorine dioxide, AWWA. Annual Conference and Exposition, J. AWWA., Vol. 82, pp. 160-165. Gordon G. and Bubnis B., (1995), Chlorine dioxide chemistry issues, Proceedings of the third international symposium, chlorine dioxide: drinking water, process water and wastewater issues, New Orlean, LA. Gordon G., (2001), Is all chlorine dioxide created equal ?, J. AWWA., Vol. 94, pp.163-174. Gracia R., Cortes S., Sarasa J., Ormad P. and Ovelleiro J.L., (2000), TiO2-catalysed ozonation of raw erbo river water, Water Res., Vol. 34, pp. 1525-1532. Hoehn R.C., (1992), Chlorine dioxide use in water treatment; key issues, Proceedings of the second international symposium, Chlorine Dioxide: Drinking Water Issues: Houston, TX. Hoehn R.C., Rosenblatt A.A. and Gates D.J., (1996), Considerations for chlorine dioxide treatment of drinking water, Proceedings of the AWWA Water Quality Technology Conference, Boston, MA. Hoff J.C., (1986), Inactivation of microbial agents by chemical disinfectants, USEPA, EPA/600/S2-86/067. Hoigne J. and Bader H., (1994), Kinetics of reactions of chlorine dioxide in water I. rate constants for inorganic and organic compounds, Water Res., Vol. 28, pp. 45-55. Huguenin J.E. and Colt J., (1989), Design operating guide for aquaculture sweater system, Elsevier: Amsterdam. Israilides C.J., Vlyssides A.G., Mourafeti V.N. and Karvouni G., (1997), Olive oil wastewater treatment with the use of an electrolysis system, Bioresource Technol., Vol. 61, pp. 163-170. Jin R., Hu S., Zhang Y. and Bo T., (2009), Concentration-dependence of the explosion characteristics of chlorine dioxide gas, J. Hazard. Mater., Vol. 166, pp. 842-847. Jung G.B., Su A., Tu C.H., Weng F.B., Chan S.H., Lee R.Y. and Wu S.H., (2006), Supported Nafion membrane for direct methanol fuel cell, J. Fuel Cell Sci. Technol., Vol. 4, pp. 248-254. Karpel Vel Leitner N., De Laat J. and Dore M., (1992), Photodecomposition of chlorine dioxide and chlorite by U.V. Irradiation- Part II. Kinetic study, Water Res., Vol. 26, pp. 1665-1672. Katz A. and Narkis N., (2001), Removal of chlorine dioxide disinfection by-products by ferrous salts, Water Res., Vol. 35, pp. 101-108. Kim J.M., Huang T.S., Marshall M.R. and Wei C.I., (1999), Chlorine dioxide treatment of seafoods to reduce bacterial loads, J. Food Sci., Vol. 64, pp. 1089-1093. Koch B. and Krasner S.W., (1989), Occurrence of distribution by-products in a distribution system, Proceedings of the Annual Conference sponsored by American Water Works Association, Pt. 2, pp. 1203-1230. Kraft A., Stadelmann M., Blaschke M., Kreysig D., Sandt B., SchrOder F. and Rennau J., (1999), Electrochemical water disinfection. Part I: Hypochlorite production from very dilute chloride solutions, J. Appl. Electrochem., Vol. 29, pp. 861-868. Lalezary S., Pirbazari M. and McGuire M.J., (1986), Oxidation of five earthymusty taste and odorcompounds, J. AWWA., , pp. 62-69. LeChevallier M.W., Arora H., Battigelli D. and Abbaszadegan M. (1996), Chlorine dioxide for control of Cryptosporidium and disinfection byproducts, Conference proceedings, 1996 AWWA Water Quality Technology Conference Part II, Boston, Massachusetts. Lenes D., Deboosere N., Menard-Szczebara F., Jossent J., Alexandre V., Machinal C. and Vialette M., (2010), Assessment of the removal and inactivation of influenza viruses H5N1 and H1N1 by drinking water treatment, Water Res., Vol. 44, pp. 2473-2486. Lillard H.S., (1980), Effect on broiler carcasses and water of treating chiller water with chlorine and chlorine dioxide, Poultry Sci., Vol. 59, pp. 1761-1766. Lin S.H. and Wu C.L., (1996), Electrochemical removal of nitrite and ammonia for aquaculture, Wat. Res., Vol. 30, pp. 715-721. Lindgren B.O. and Nillson T., (1973), Preparation of carboxylic acids from aldehydes (including Hydroxylated Benzaldehydes) by oxidation with chlorite, Acta Chem. Scand., Vol. 27, pp. 888-890. Lopez-Velasco G., Tomas-Callejas A., Sbodio A., Artes-Hernandez F. and Suslow T.V., (2012), Chlorine dioxide dose, water quality and temperature affect the oxidative status of tomato processing water and its ability to inactivate Salmonella, Food Control., Vol. 26, pp. 28-35. Lykins B.W. Jr. and Griese M.H., (1986), Using chlorine dioxide for trihalomethane control, J. AWWA., Vol. 78, pp. 88-93. Masschelein W.J., (1979), Chlorine dioxide: chemistry and environment impact of oxychlorine compounds, Ann Arbor Science., Ann Anbor, MI. Miller W.G., Rice R.G., Robinson C.M., Scullen R.L., Kuhn W. and Wolf H., (1978), An assessment of ozone and chlorine dioxide technology for treatment of municipal water supplies, EPA-600012-17-147,USEPA, Washington, DC. Narkis N., Katz A., Orshansky F., Kott Y. and Friendl Y., (1995), Disinfection of effluents by combinations in chlorine dioxide and chlorine, Wat. Sci. Tech., Vol. 31, pp. 105-114. NSC (National Safety Council), (1967), Data sheet 525 on chlorine dioxide. Olmez H., and Kretzschmar U., (2009), Potential alternative disinfection methods for organic fresh-cut industry for minimizing water consumption and environmental impact, LWT--Food Sci. Technol., Vol. 42, pp. 686-693. Peeters J.E., Mazas E.A., Masschelein W.J., Villacorta Martiez de Maturana I. and Debacker E., (1989), Effect of disinfection of drinking water with ozone or chlorine dioxide on survival of Cryptosporidium parvum oocysts, Appl. Environ. Microb., Vol. 55, pp. 1519-1522. Pillai K.C., Kwon T.O., Park B.B. and Moon I.S., (2009), Studies on process parameters for chlorine dioxide production using IrO2 anode in an un-divided electrochemical cell, J. Hazard. Mater., Vol. 164, pp. 812-819. Prentice G., (1991), Electrochemical engineering principles, Englewood Cliffs: USA. Ridenour G.M. and Ingols R.S., (1947), Bactericidal properties of chlorine dioxide, J. AWWA., Vol. 39, pp. 561-567. Ringer W.C. and Campbell S.J., (1955), Use of chlorine dioxide for alage control at philadelphia, J. AWWA., Vol. 47, pp. 740-746. Robert G.T., (1989), Chlorine dioxide in drinking water: a current perspective, Ph. D. ATS health sciences EA Engineering, Science & Technology, Inc. Silver Spring. MD. Roller S.D., Olivieri V.P. and Kawata K., (1980), Mode of bacterial inactivation by chlorine dioxide, Water Res., Vol. 14, pp. 635-641. Rook J.J., (1974), Formation of halotorms during chlorination of natural water, Water Treatment Exam., Vol. 23, pp. 234-243. Russo R.C., (1985), Ammonia, nitrite and nitrate, In Fundamentals of Aquatic Toxicology, Hemisphere: New York. Sadler K., (1981), The toxicity of ammonia to the European eel (Anguilla anguilla L.), Aquaculture, Vol. 26, pp. 173-181. Scarpino P.V., Brigano F.A.O., Cronier S. and Zink M., (1979), Effect of particulates on disinfection of enteroviruses in water by chlorine dioxide, Cincinnati: USEPA, EPA-600/2-79-054. Sconce J.S., (1962), Chlorine: It’s manufacture, properties and use, Reinhold: New York, pp. 485-511. Snoeyink V.L. and Jenkins D., (1980), Water Chemistry, John Wiley & Sons: New York. Stanbury D.M., Martinez R., Tseng E. and Miller C.E., (1988), Slow electron transfer between Main-Group species: oxidation of nitrite by chlorine dioxide, Inorg. Chem., Vol. 27, pp. 4277-4280. Strong F.C., (1961), Faraday’s laws in one equation, J. Chem. Educ., Vol. 38, pp. 98. Symons J.M., (1977), Ozone, chlorine dioxide, and chloramines as alternatives to chlorine for disinfection of drinking water, Ohio: Water Supply Research Office of Research and Development, USEPA. Thomas D.W., (1984), Principles of water quality, Academic Press: Florida. Trussell R.R. and Umphres M.D., (1978), The formation of trihalomethanes, J. AWWA., Vol. 70, pp. 604-612. USEPA (U.S. Environmental Protection Agency), (1999), Guidance manual alternative disinfectants and oxidants: 4. Chlorine dioxide, Office of Water (4607), EPA 815-R-99-014. USEPA., (2006), Reregistration eligibility decision(RED) for chlorine dioxide and sodium chlorite (Case 4023), Prevention, Pesticides and Toxic Substances (7510P), EPA 738-4-06-007. USNRC (U.S. National Research Council), (1980), Drinking water and health, Vol. 2, National Academypress., Washington, D.C. Wedemeyer G.A. and Yasutake W.T., (1977), Clinical methods for the assessment of the effects of environmental stress on fish health, U.S. Fish and Wildlife Service: Washington, D.C. White G.C., (1972), Handbook of chlorination. Van Nostrand Reinhold Company, New York. White G.C., (1992), Handbook of chlorination and alternative disinfectants. 3rd ed., Van Nostrand Reinhold Company, New York. White G.C., (1999), Chemistry of chlorination, In Handbook of chlorination and alternative disinfectants, 4th edn. John Wiley & Sons: New York, Chapter 4, pp. 212-287. WHO (World Health Organization), (2003), Laboratory biosafety manual: disinfection and sterilization, 2nd ed., Geneva Chapter 14, pp. 59-66. Wilk I.J., Altmann R.S. and Berg J.D., (1987), Antimicrobial activity of electrolyzed saline solutions, Sci. Total Environ., Vol. 63, pp. 191-197. Wood J.P. and Martin G.B., (2009), Development and field testing of a mobile chlorine dioxide generation system for the decontamination of buildings contaminated with Bacillus anthracis, J. Hazard. Mater., Vol. 164, pp. 1460-1467. Wu V. and Rioux A., (2009), A simple instrument-free gaseous chlorine dioxide method for microbial decontamination of potatoes during storage, Food Microbiol., Vol. 27, pp. 179-184. Xue B., Jin M., Yang D., Guo X., Chen Z., Shen Z., Wang X., Qiu Z., Wang J., Zhang B. and Li J., (2013), Effects of chlorine and chlorine dioxide on human rotavirus infectivity and genome stability, Water Res., Vol. 47, pp. 3329-3338. 刁淑華,(1993),高級氧化預處理對自來水含氯有機物生成之影響,台大環工所,碩士論文,台北。 王榮鴻,(2001),氣泡柱之水力操作參數對循環養殖用淡海水中顆料與無機氮去除效率之影響研究,國立台灣大學農業工程學研究所,碩士論文,台北。 王慧,(2007),穩定性二氧化氯改善斑節對蝦育苗水環境效果的試驗,蘇鹽科技,11月,第4期,第21-26頁。 王慧,(2008),穩定性二氧化氯改善班節對蝦育苗水環境效果的試驗,水產科學,第28卷第五期。 史建華、王韓信、徐琴英、李建忠、朱選才,(2006),穩定性二氧化氯制劑及其在水產養殖上的應用,水產科技情報,第33卷,第6期,第257-259頁。 田福助,(1994),電化學:基本原理與應用,五洲出版社:台北市。 吳垠、馬悅新、祝國芹、桂遠明,(1998),二氧化氯改善養殖水環境效果的研究,水產科學,第17卷,第4期,第10-13頁。 李榕菁,(2003),二氧化氯氧化水中腐植酸對消毒副產物生成及控制之研究,逢甲大學環境工程與科學學系,碩士論文,台中。 孟思妤、孟長明、陳昌福,(2011),二氧化氯制劑對幾種淡水蝦類鰓片上附著菌的清除作用,科學養魚,5月,第7頁。 林世豪、吳俊哲、吳志超,(2005),二氧化氯應用在淨水程序中對有機物之去除探討-模廠試驗,第二屆海峽兩岸飲用水安全控制技術及管理研討會,第159-162頁。 施宜珍,(1996),以二氧化氯為替代消毒劑時其副產物生成與控制之研究,國立中興大學環境工程研究所,碩士論文,台中市。 袁定清,(2007),二氧化氯及其在水產養殖中的應用技術初探,齊魯漁業,第24卷,第2期,第9-10頁。 張怡怡,(1996),飲用水中無機物、微生物及濁度管制項目及管制標準之合理性分析,EPA-85-J102-09-05,行政院環境保護署委託研究報告,台北醫學院。 張泳,(2006),二氧化氯含漱液治療牙齦炎、控制牙菌斑的臨床效果,牙體牙髓牙周病學雜誌,16(7)。 張禎祐,(2000),以二氧化氯為替代消毒劑之副產物生成與控制研究,國立中興大學環境工程研究所,博士論文,台中市。 張禎祐,(2007),電解產生二氧化氯之陽極及電透析膜效能評估之研究,期末報告,明道大學生命科學學系。 張懿文、吳志超、黃文鑑 (2005),二氧化氯預氧化對混凝程序去除天然有機物及濁度效率影響之研究,中華民國環境工程學會 第三十屆廢水處理技術研討會。 許勝聖,(1996),以二氧化氯為替代消毒劑時其生成控制及消毒效率之研究,國立中興大學環境工程研究所,碩士論文,台中市。 陳俊明,(1999),室內循環水高密度養殖系統之整合、改良與推廣,財團法人曹公農業水利研究發展基金會。 陳建宏,(2011),礫間接觸氧化對水中氨氮去除成效之評估,明志科技大學生化工程研究所,碩士論文,新北市。 陳琪婷,(2003),以二氧化錳催化降解水中氨氮之研究,國立中山大學海洋環境及工程學系,碩士論文,高雄。 陳超然、陳昌福,(2003),二氧化氯在水產養殖小中的應用研究狀況(下),漁業致富指南,第11期,第61-62頁。 曾文洋,(1996),海產蝦類人工養殖學,第11版,前程出版社:高雄市。 曾婉甯,(2006),有效二氧化氯的定量及其抗菌處理對鮪魚肉片品質的影響,國立高雄海洋科技大學水產食品科學研究所,碩士論文。高雄市。 黃志彬,(2002),提升傳統淨水處理程序效能之研究-鳳山場內模型廠試驗研究,第一年計畫,台灣省自來水公司期末報告,第2.6-2.11頁。 溫姝、張健、張鳳萍,(2012),二氧化氯在淡水養殖中的應用,黑龍江水產,第3期,第26-27頁。 萬夕和、陸勤勤、荊燕、張美如、樓國庭、裴鴻生、許璞,(2002),不同質量濃度二氧化氯對三種河蟹致病的殺滅效果,水產科學,第21卷,第6期,第4-6頁。 董榮彰,(2005),電解法生產二氧化氯原型機之開發與效益評估,屏東科技大學食品系,碩士論文,屏東。 熊楚強、王月,(1996),電化學,文京圖書:台北市。 劉羽芩、衣蓉萱,(2007),電解產生二氧化氯之陽極及電透析膜效能評估之研究,計畫編號:F550001670,工研院研究報告。 劉明哲、賴政國,(2003),環境消毒劑-二氧化氯藥效試驗探討,環保署環境檢驗季刊,第48期,第16-23頁。 劉明哲、賴政國、盧明俊、陳重男,(2003),二氧化氯氣液滅菌效能研究,第二十八屆廢水技術研討會。 蔡翼澤,(2007),以電化學法產製二氧化氯及其副產物生成之研究,國立聯合大學環境與安全衛生工程學系,碩士論文,苗栗。 盧明俊、劉明哲、邱奕展、賴政國,(2005),二氧化氯產生器應用在水產養殖水體淨化,計畫編號:NSC 93-2622-E-041-002-CC3,環境工程學會第三屆環境資訊研討會。 盧寧、高乃雲、伍海輝、董秉直、樂林生、吳今明,(2005),二氧化氯消毒技術研究,第二屆海峽兩岸飲用水安全控制技術及管理研討會,第181-184頁。 戴光正,(2002),臭氧處理養殖水質之基礎研究,國立中興大學農業機械工程學研究所,碩士論文,台中。 謝介士、葉瑾瑜、陳紫媖,(2008),二氧化氯對氨氮之處理研究,水產試驗所東港生技研究中心。 顏在宏,(2002),循環水養殖系統之濾材物性與配置對水處理效率影響之研究,國立台灣大學生物環境系統工程學系暨研究所,碩士論文,台北。
摘要: 近數十年來,由於二氧化氯(Chlorine dioxide, ClO2)優異的消毒效能及其相較於氯(Chlorine, Cl2)有較佳的有害消毒副產物控制能力,因而被廣泛的應用到各相關領域,包含如淨水程序、冷卻水系統、廢水處理、室內空品及環境消毒滅菌等。二氧化氯於傳統上之製備方式多以純化學酸化法來進行操作,但其仍舊有產製濃度不易控制及無法連續製備等缺欠,相較於傳統方式,電化學技術可透過電解含特定化學物質之陽極電解液來產製同時具備高純度及高濃度特性之二氧化氯,且該法有用藥簡單、操作容易及現地連續產出等優勢。本研究擬以自行架設之隔膜電解機組做為產製二氧化氯溶液之電解設備,並透過各相關軟硬體參數之調控,以尋求適用於本研究之最佳操作條件,期供未來各相關領域之研究參酌。此外亦同時以養殖水體為試驗目標,進行水質改善之可行性研究,用以探討本研究所自行產製之二氧化氯溶液是否於該應用領域具相對之實用價值。 本研究之實驗內容包含有「以電化學法產製二氧化氯」及「改善養殖水體之可行性」等兩階段試驗。研究結果顯示,由第一階段之試驗成果可知,當以固定操作電壓12 V、陰極電解液0.5 % NaOH、陽極電解液2 % NaCl混合6 % NaClO2及陽極電解液初始溫度30 ℃進行批次電解操作時,可於操作達20分鐘得濃度及純度分別為906.5 mg/L及98.4 %之二氧化氯溶液。若進一步以陽極電解液進流速率120 ml/min及固定操作電流70 A進行連續電解操作時,可於操作達30分鐘後連續且穩定產出濃度大於600 mg/L且純度高於98 %之二氧化氯溶液;由第二階段之試驗成果可知,當以氨氮及亞硝酸根離子為待處理目標污染物,同時亦將硝酸根離子納入質量平衡計算時,其質量平衡之損失與所添加處理藥劑中氯之含量多寡成正相關性。此外本研究所自行產製氯及二氧化氯重量比為1 : 1之混合性溶液,於降解氨氮及亞硝酸根離子之去除效能明顯優於高純度二氧化氯,且亦可有近似於氯降解污染物之能力。
Owing to its higher efficiency and better control of disinfection by-products compared with chlorine (Cl2), chlorine dioxide (ClO2) have been widely applied as disinfectant in public water system, cooling system control and wastewater treatment in the past decades. ClO2 of high purity and high concentration can be electrochemically produced when using anolyte composed of specific chemical compounds. Compared with the traditional process, electrochemical process has the advantages of simple dosing, ease of operation and continuous production onsite. In this study, different parameters of membrane electrolysis are varied to determine the appropriate conditions for ClO2 generation. Moreover, the feasibility on the improvement of aquaculture water by chlorine dioxide are also examined. Experimental results show that the batch membrane electrolysis, conducted at operation voltage of 12 V using anolyte composed of 2 % NaCl and 6 % NaClO2 with initial temperature of 30 ℃ and NaOH catholyte of 0.5 % concentration, can yield ClO2 of 906.5 mg/L concentration and 98.4 % purity. Moreover, the subsequent electrolysis was conducted at operation current of 70 A and anolyte feed rate of 120 ml/min, the concentration and the purity of ClO2 were continuously over 600 mg/L and 98 % after 30 min operation, respectively. The mixture that was composed of chlorine and chlorine dioxide had the better efficiency than pure chlorine dioxide on the removal of ammonia nitrogen and nitrite. The loss of mass balance, dividing ammonium, nitrite and nitrate, is also found to be positively correlated with additional rate of chlorine.
URI: http://hdl.handle.net/11455/91708
文章公開時間: 2013-11-19

檔案 大小格式 
nchu-102-8096063004-1.pdf4.72 MBAdobe PDF檢視/開啟

在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。