Please use this identifier to cite or link to this item:
標題: 石墨烯/二氧化鈦複合材料光降解水中氫氧化四甲基銨之研究
Photocatalytic degradation of TMAH from aqueous solution with GO/TiO2 composites
作者: Yi-Min Shen
關鍵字: 氫氧化四甲基銨
引用: Aryal, S. and Kim, C.K. (2008) Multi-walled carbon nanotubes/TiO2 composite nanofiber by electrospin-ning. Materials Science and Engineering 28, 75-79. Autin, O., Hart, J., Jarvis, P. and MacAdam, J. (2012) Comparison of UV/H2O2 and UV/TiO2 for the degradation of metaldehyde: Kineticsand the impact of background organics. Water Research. 46(17), 5655-5662. Anpo, M., Takeuchi, M. (2003) The design and development of highly reactive titanium oxide photocatalysts operating under visibal light irradiation. J. Catal. 216, 505-516. Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., and Lau, C. N. (2008) Superior thermal conductivity of single layer grapheme. Nano Lett. 8:, 902–907. Bao, Q., Zhang, H., Yang, J.X., Wang, S., Tang, D.Y., Jose, R., Ramakrishna, S., Lim, C.T., Loh, K.P. (2010) Graphene–polymer nanofiber membrane for ultrafast photonics. Adv. Funct. Mater. 20(5), 782-791. Barrett, E.P., Joyner, L.G., Halenda, P.P. (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73(1), 373-380. Chan, C.C., Chang, C.C., Hsu, W.C., Wang, S.K. and Lin, J. (2009) Photocatalytic activities of Pd-loaded mesoporous TiO2 thin films. Chem. Eng. J. 152, 492–497. Chen, C., Cai, W.M., Long, M.C., Zhou, B.X., Wu, Y.H., Wu, D.Y., and Feng, Y.J., (2010) Synthesis of Visible-Light Responsive Graphene Oxide/TiO2 Composites with p/n Heterojunction. ACS Nano. 4:, 6425-6432. Chong, M. N., Jin, B., Chow, W. K., Saint, C. (2010) Recent developments in photocatalytic water treatment technology: A review. Water Research. 44, 2997-3027. Chu, W. and Wong, C.C. (2004) The photocatalytic degradation of dicamba in TiO2 suspensions with the help of hydrogen peroxide by different near UV irradiations. Water Research. 38, 1037-1043. Cot, F., Larbot, A., Nabias, G. and Cot, L. (1998) Preparation and characterization of colloidal solution derived crystallized titania powder. Journal of the European Ceramic Society. 18, 2175-2181. d’Oliveira J.C., Sayyed G.A. and Pichat P. (1990) Photodegradation of 2- and 3-chlorophenol in titanium dioxide aqueous suspensions. Environ. Sci. Technol. vol.24, 990-996. Di Paola, A., Garcia-Lopez, E., Ikeda, S., Marc, G., Ohtani, B., Palmisano, L. (2002) Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2. Catal. Today. 75, 87-93. Duran, A. and Monteagudo, J.M., (2007) Solar photocatalytic degradation of reactive blue 4 using a Fresnel lens. Water Research. 41, 690-698. Fernández-Ibáñez, P., Blanco, J., Malato, S., Nieves, F.J. (2003) Application of the colloidal stability of TiO2 particles for recovery and reuse in solar photocatalysis. Water Res. 37, 3180-3188. Fujishima, A. and Zhang, X. (2006) Titanium dioxide photocatalysis: present situation and future approaches. C.R. Chimie. 9, 750-760. Fujishima, A., Rao, T.N. and Tryk, D.A. (2000) Titanium dioxide photocatalysis. J. Photochem. Photobiol. C: Photochem. Rev. 1, 1–21. Gaya, U.I., Abdullah, A.H. (2008) Heterogeneous hotocatalytic- degradation of organic contaminants over titanium dioxide:A reviewof fundamentals, progress and problems. J.Photochem. Photobiol. C:Photochem. 9, 1-12. Hartono, T., Wang, S., Ma, Q., Zhu, Z., (2009) Layer structured graphite oxide as a novel adsorbent for humic acid removal from aqueous solution. J. Colloid Interface Sci. 333(1), 114-119. Imoberdorf, G. and Mohseni, M., (2011) Degradation of natural organicmatter in surface water using vacuum-UV irradiation. Journal of Hazardous Materials. 186, 240-246. Jiang, G.D., Lin, Z.F., Chen, C., Zhu, L.H., Chang, Q., Wang, N., Wei, W., and Tang, H.Q., (2011) TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants Carbon. 49:, 2693-2701. Kamegawa, T., D. Y. a. H. Y., (2010) Graphene Coating of TiO2 Nanoparticles Loaded on Mesoporous Silica for Enhancement of Photocatalytic Activity. 114(35):, 15049-15053. Khataee, A.R. and Kasiri, M.B. (2010) Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes. Journal of Molecular Catalysis A: Chemical. 328, 8-26. Klare, M., Scheen J., Vogelsang K., Jacobs H. and Broekaert J.A.C. (2000) Degradation of short-chain alkyl- and alkanolamines by TiO2- and Pt/TiO2-assisted photocatalysis. Chemosphere. 41: 353-362. Li, Z., Gao, B., Chen, G.Z. and Puma, G. (2011) Carbon nanotube/titanium dioxide (CNT/TiO2) core–shell nanocomposites with tailored shellthickness, CNT content and photocatalytic / photoelectrocatalytic properties. Applied Catalysis B: Environmental. 110, 50-57. Liu, J., H. B., Wang, Y., Liu, Z., Zhang, X. an Sun, D. D. (2010) Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications. Adv. Funct. Mater 20 :, 4175-4187. Liu, W., Li, H., Xu, C., Khatami, Y., and Banerjee, K. (2011) Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition. Carbon. 49(13) :, 4122-4130. Liu, Y., Wang, W., Wang, Y., Peng, X. (2014) Homogeneously assembling like-charged WS2 and GO nanosheets lamellar composite films by filtration for highly efficient lithium ion batteries. Nano Energy 7, 25-32. Low, G.K.C., McEvoy S.R., Matthews R.W. (1991) Formation of nitrate and ammonium ions in titanium dioxide mediated photocatalytic degradation of organic compounds containing nitrogen atoms. Environmental Science and Technology. 25: 460-467. Mills, A., Hunte, S.L. (1997) An overview of semiconductor photocata-lysis. J. Photochem. Photobiol. A 108, 1-35. Paola, A.Di., Marci, G., Palmisano, L., Schiavello, M., Uosaki, K., Ikeda, S., Ohtani, B. (2002) Preparation of Polycrystalline TiO2 Photocatalysts Impregnated with Various Transition Metal Ions: Characterization and Photocatalytic Activity for the Degradation of 4-Nitrophenol. J. Phys. Chem. B. 106: 637. Rauf, M.A., Meetani, M.A., Khaleel, A. and Ahmed, A. (2010) Photocatalytic degradation of Methylene Blue using a mixed catalyst and product analysis by LC/MS . Chemical Engineering Journal. 157, 373-378. Sclafain, A., Palmisano L., Schiavello M. (1990) Influence of the preparation methods of TiO2 on the photocatalytic degradation of phenol in aqueous dispersion. Journal of Physical Chemistry. 94 : 829. Singhm V.K., Patra, M.K. and Anoth, M.M., (2009) In situ synthesis of graphene oxide and its composites with ironoxide. New Carbon Materials. 24(2):147-152. Su, F., Lu, C., Hu, S., (2010) Adsorption of benzene, toluene, ethylben-zene and p-xylene by NaOCl-oxidized carbon nanotubes. Colloid & Surfaces. A. Physi. Eng. Aspects 353, 83-91. Thangavel, S., Venugopal, G. (2014). Understanding the adsorption property of graphene-oxide with different degrees of oxidation levels. Powder Technol. 257, 141-148. Wang K. H., Tsai H. H. and Hsieh Y. H. (1998) The kinetics of photocatalytic degradation of trichloroethylene in gas phase over TiO2 supported on glass bead. Appl. Catal. B: Environ. vol.17, 313-320. Wang, W., Serp, P., Kalck, P. and Faria, J.L. (2005) Photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol–gel method. Applied Catalysis B: Environmental. 56, 305-312. Yang, S.T., Chen, S., Chang, Y., Cao, A., Liu, Y., Wang, H. (2011) Removal of methylene blue from aqueous solution by graphene oxide. J. Colloid Interface Sci. 359(1), 24-29. Yu, Y., Yu, J.C., Chan, C.Y., Che, Y.K., Zhao, J.C., Ding, L., Ge, W.K. and Wong, P.K. (2005) Enhancement of adsorption and photocatalytic activity of TiO2 by using carbon nanotubes for the treatment of azo dye. Applied Catalysis B: Environmental. 61, 1-11. Zhang, C.N.Z., Tang, Z.R. and Xu, Y.Z. (2012) Improving the photocatalytic performance of graphene–TiO2 nanocomposites via a combined strategy of decreasing defects of graphene and increasing interfacial contact. Phys. Chem. Chem. Phys 14 :, 9167-9175. Zhang, H., P. X., Du, G., Chen, Z., Oh, K., Pan, D., Jiao, Z. (2011) A facile one-step synthesis of TiO2/graphene composites for photodegradation of methyl orange. Nano Res. 4(3):,274-283. Zhang, H., X. L., Li, Y., Wang, Y. and Li, J. (2010) P25-Graphene Composite as a High Performance Photocatalyst. ACS Nano. 4(1), 380-386. Zhang, L., Li, X., Huang, Y., Ma, Y., Wan, X., and Chen, Y. (2010) Controlled synthesis of fewlayered graphene sheets on a large scale using chemical exfoliation. Carbon. 48:, 2367–2371. Zhang, Y., Tang, Z. R., Fu, X. and Xu, Y. J. (2011) Engineering the Unique 2D Mat of Graphene to Achieve Graphene-TiO2 Nanocomposite for Photocatalytic Selective Transformation : What Advantage does Graphene Have over Its Forebear Carbon Nanotube?. ACS Nano. 5, 7426-7435. Zhou, K.F., Zhu, Y.H., Yang, X.L., Jiang, X., and Li, C.Z. (2011) Preparation of graphene–TiO2 composites with enhanced photocatalytic activity. New J. Chem. 35:, 353-359. Zhu, Z.Z., Wang, Z., Li, H.L. (2008) Functional multi-walled carbon nanotube/polyaniline composite films as supports of platinum for formic acid electrooxidation. Appl. Surf. Sci. 254, 2934-2940. 王勇勝,2008,TiO2 在不同光波源降解染料AO7及RhB 之研究,國立雲林科技大學碩士論文。 劉謹銓, 2008,製備與改質環管狀二氧化鈦光觸媒及雙氯酚異相光催化降解之研究,中興大學博士論文。 江佳玲、張鎮南、黃科倫,2007,探討臭氧結合紫外光反應去除腐植酸之降解情形, 東海科學學報,第9 卷,頁15-28,7 月。 林有銘,2007,奈米二氧化鈦光觸媒製作與環境應用技術,工研院奈米粉體與薄膜科技中心,6 月。 郭明樺,2010,二氧化鈦薄膜光催化及超過濾程序處理TFT-LCD 放流水之研究,國立聯合大學碩士論文。 樓仲軒,2007,自製備二氧化鈦 (TiO2) 及金屬離子協同降解染料RhB 之研究,國立雲林科技大學碩士論文。 鄭玫玲,2007,金、鉑擔載於二氧化鈦上進行光催化甲醇重組產氫之研究, 國立中央大學碩士論文。 賴怡蓉,2005,氧化鈦奈米管之製備、鑑定及催化應用,國立中央大學碩士論文。
摘要: 近年來臺灣高科技產業發展蓬勃,在高科技產業放流水中,常出現 氫氧化四甲基銨(tetramethylammonium hydroxide, TMAH)或銨離子(NH4+)等含氮污染物。此類污染物進入環境中可能會造成水體優養化與水生動物的死亡,而傳統的廢水處理技術對於此類污染物的去除能力明顯不足,無法有效的將廢水處理至符合放流水標準。 本研究製備氧化石墨烯(graphene oxide, GO)/二氧化鈦(titanium dioxide, TiO2)之奈米複合材料光降解分解水中TMAH。由批次光降解實驗顯示,5% GO-TiO2在400oC鍛燒下、劑量1.0 g/L最佳條件下,經四小時批次光降解實驗有較佳的轉化率(73.7%),高於不添加GO之TiO2(60.6%)和市售商用Degussa P25(67.6%)。背景實驗之結果看出,非間接光解所造成TAMH之去除效率在15.9%以下,說明整體光反應過程以間接光解為主要的機制。水中影響因子實驗顯示,當初始pH值在鹼性範圍、系統溫度與紫外光照強度上升,對TMAH之轉化率有提升的趨勢;而當離子強度提高與初始濃度提高,會使轉化率下降。 綜合以上研究結果,添加適量的GO(5%)與TiO2複合將能有效提升水中TMAH之轉化率,於高科技廢水中含氮物質處理具有相當的應用潛力。
In recent years, with high-technology industries developed rapidly and extensively, more and more nitrogenous contaminations were found in aqueous environment, i.e. tetramethylammonium hydroxide (TMAH) or ammonium (NH4+). This type of pollution would lead to eutrophication or aquatic organism death. The removal performance of nitrogenous contaminations by traditional wastewater treatment is too low to reach effluent standards. This study prepares the graphene oxide/titanium dioxide (GO/TiO2) nanocomposites which can photodegrade TMAH in aqueous solutions. The TMAH conversion by GO/TiO2 showed the best performance at solid/liquid ratio of 1.0 g/L, 5% GO contents, 400oC calcinations temperature, and reached 73.9%. This is higher than TiO2(60.6%)and Degussa P25(67.6%). The removal efficiency for TMAH appeared less than 19.6% in the background experiment, which includes photolysis and dark reaction. This means that major mechanism in the photoreaction process was attributed to photocatalytic degradation. The TMAH conversion increased with solution pH, temperature and light intensity but decreased with solution ionic streagth and initial TMAH concentration. These results suggest that photodegradation process of TMAH with GO/TiO2 nanocomposite is possibly a promising technology in wastewater treatment of high-tech industry.
文章公開時間: 2018-08-07
Appears in Collections:環境工程學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.