請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/91735
標題: Characteristics and UV detectors applications of Co-doped ZnO nanostructures grown by PLD
作者: Tzu-Ching Hsu
關鍵字: Co-doped ZnO
nanorod structure
pulsed laser deposition
ultraviolet photodetector
引用: [1] T. J. Gray, “Sintering of Zinc Oxide,” J. Am. Ceram. Soc. ,vol. 37, pp. 534-538, 1954. [2] R. B. Heller, J. McGannon, and A. H. Weber, “Precision Determination of the Lattice Constants of Zinc Oxide,” J. Appl. Phys. , vol. 21, pp.1283-1284, 1950. [3] R. R. Reeber, “Lattice parameters of ZnO from 4.2o to 296oK,” J. Appl. Phys, vol. 41, pp. 5063-5066, 1970. [4] R. L. Weiher, “Optical Properties of Free Electrons in ZnO,” Phys. Rev. , vol. 152, pp. 736-739, 1966. [5] W. Y. Liang and A. D. Yoffe, “Transmission Spectra of ZnO Single Crystals,” Phys. Rev. Lett. , vol. 20, pp. 59-62, 1968. [6] C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, “First-Order Raman Effect in Wurtzite-Type Crystals,” Phys. Rev. , vol. 181, pp. 1351-1363, 1969. [7] J. M. Calleja and M. Cardona, “Resonant Raman scattering in ZnO,” Phys. Rev. B, vol. 16, pp. 3753-3761, 1977. [8] J. Grabowska, A. Meaney, K. Nanda, J. P. Mosnier, M. Henry, J. R. Duclère, “Surface excitonic emission and quenching effects in ZnOnanowire/ nanowall systems: Limiting effects on device potential,” Phys. Rev. B, vol. 71, 2005. [9] K. Seo, T. Lim, S. Kim, H. L. Park, and S. Ju, “Tunable-white-light-emitting nanowire sources,” Nat. Nanotech. , vol. 21, 2010. [10] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. , vol. 98, 2005. [11] Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides,” Science, vol. 291, pp. 1947-1949, 2001. [12] C. S. Lao, M. C. Park, Q. Kuang, Y. L. Deng, A. K. Sood, D. L. Polla, et al., “Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization,” J. Am. Ceram. Soc. , vol. 129, pp. 12096, 2007. [13] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, et al., “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. , vol. 7, pp.1003-1009, 2007. [14] C. H. Ye, Y. Bando, X. S. Fang, G. Z. Shen, and D. Golberg, “Enhanced field emission performance of ZnO nanorods by two alternative approaches,” J. Phys. Chem. C, 'vol. 111, pp. 12673-12676, 2007. [15] Y. Peng and L. Bao, “Controlled-synthesis of ZnO nanorings,” ChemicalJournal of Chinese Universities-Chinese, vol. 29, pp. 28-32, Jan 2008. [16] R. Elilarassi and G. Chandrasekaran, “Synthesis, structural and optical characterization of Ni-doped ZnO nanoparticles,” J. Mater. Sci. - Mater. Electron. , vol. 22, pp. 751-756, 2011. [17] W. Bai, K. Yu, Q. Zhang, F. Xu, D. Peng, and Z. Zhu, “Large-scale synthesis of ZnO flower-like and brush pen-like nanostructures by a hydrothermal- decomposition route,” Mater. Lett. , vol. 61, pp. 3469-3472, 2007. [18] F. C. Huang, Y. Y. Chen, and T. T. Wu, “A room temperature surface acoustic wave hydrogen sensor with Pt coated ZnO nanorods,” Nat. Nanotech. , vol. 20, 2009. [19] J. Suehiro, N. Nakagawa, S. Hidaka, M. Ueda, K. Imasaka, M. Higashihata, et al., “Dielectrophoretic fabrication and characterization of a ZnO nanowire-basedUV photosensor,” Nat. Nanotech. , vol. 17, pp. 2567-2573, 2006. [20] P. Ravirajan, A. M. Peiro, M. K. Nazeeruddin, M. Graetzel, D. D. C. Bradley, J.R. Durrant, et al., 'Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer, “J. Phys. Chem. B, vol. 110, pp. 7635-7639, 2006. [21] J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee, O. K. Tan, et al., “ Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications,” Nat. Nanotech. , vol. 17, pp. 4995-4998, 2006. [22] H. J. Kim, C. H. Lee, D. W. Kim, and G. C. Yi, “Fabrication and electrical characteristics of dual-gate ZnO nanorod metal-oxide semiconductor field-effecttransistors,” Nat. Nanotech. , vol. 17, pp. S327-S331, 2006. [23] X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, “A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm,” Nano Lett. , vol. 8, pp. 1219-1223, 2008. [24] K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisic, C. C. Ling, C. D. Beling,et al., “Defects in ZnO nanorods prepared by a hydrothermal method,” J. Phys. Chem. B, vol. 110, pp. 20865-20871, 2006. [25] Y. Sun, G. M. Fuge, and M. N. R. Ashfold, “Growth of aligned ZnO nanorodarrays by catalyst-free pulsed laser deposition methods,” Chem. Phys. Lett. , vol. 396, pp. 21-26, 2004. [26] C. H. Ye, X. S. Fang, Y. F. Hao, X. M. Teng, and L. D. Zhang, “Zinc oxide nanostructures: Morphology derivation and evolution,” J. Phys. Chem. B , vol. 109, pp. 19758-19765, 2005. [27] H. J. Fan, W. Lee, R. Scholz, A. Dadgar, A. Krost, K. Nielsch, et al., “Arrays of vertically aligned and hexagonally arranged ZnO nanowires: a new template-directed approach,” Nat. Nanotech. , vol. 16, pp. 913-917, 2005. [28] B. Weintraub, Y. L. Deng, and Z. L. Wang, “Position-controlled seedless growth of ZnO nanorod arrays on a polymer substrate via wet chemical synthesis,” J. Phys. Chem. C, vol. 111, pp. 10162-10165, 2007. [29] C. Kittel, “Introduction to Solid State Physics,” John Wiley and Sons ,1996. [30] 高瞻自然科學教學資源平台:國立臺灣師範大學物理系:蔡志申、李聖尉。 [31] 高瞻自然科學教學資源平台:國立彰化師範大學物理所陳建淼研究生/國立彰化師範大學物理學系洪連輝教授責任編輯。 [32] 白鴻陞, 國立中正大學碩士論文,2007。 [33] 楊正旭, 輔仁大學碩士論文,1999。 [34] C. Kittel, “tutttP ”(7thED) , John Wiley & Sonsinc,New York , 1997. [35] B. D. Cullity, Introduction to Magnetic Materials, Addison Wesley, NewYork, 1972. [36] 鐵磁性材與合金University of Electronic Science amd Technology of China. [37] T. H. Moon, M. C. Jeong, W. Lee, J. M. Myoung, “The fabrication and characterization of ZnO UV detector,” Appl. Surf. Sci. , vol. 240, pp. 280-285, 2005. [38] S.P. Chang, R.W. Chuang, S.J. Chang, C.Y. Lu, Y. Z. Chiou, S.F. Hsieh, “Surface HCl treatment in ZnO photoconductive sensors,” Thin Solid Films, vol. 517, pp.5050-5053, 2009. [39] S. J. Chang, T. K. Lin, Y.-K. Su, Y. Z. Chiou, C. K. Wang, S. P. Chang, C. M. Chang, J. J. Tang, and B. R. Huang, “ITO/Homoepitaxial ZnSe/ITO MSM Sensors With Thermal Annealing,” IEEE Sens. J. , vol. 6, no. 4, pp. 945-949,2006. [40] C. K. Wang, S. J. Chang, Y. K. Su, Y. Z. Chiou, S. C. Chen, C. S. Chang, T. K. Lin, H. L. Liu, and J. J. Tang, “GaN MSM UV Photodetectors With Titanium Tungsten Transparent Electrodes,” IEEE Trans. Electron Devices, vol. 53, no. 1, pp. 38-42, 2006. [41] S. Wang, T. Li, J. M. Reifsnider, B. Yang, C. Collins, A.L. Holmes, Jr., and J. C. Campbell, “Schottky metal–semiconductor–metal photodetectors on GaN films grown on sapphire by molecular beam epitaxy,” IEEE J. Quantum Electron, vol. 36, no. 11, pp.1260-1265, 2000. [42] Weishu Wu, Aaron R. Hawkins, and John E. Bowers, “Frequency response of avalanche photodetectors withseparate absorption and multiplication layers,” J. L. Tech. , vol. 14, no. 12, pp. 2778-2785, 1996. [43] T. Abe, H. Ishikura, N. Fukuda, Z. M. Aung, M. Adachi, H. Kasada, and K. Ando, “Demonstration of blue-ultraviolet avalanche photodiodes of II-VI wide bandgap compounds grown by MBE,” Journal of Crystal Growth, vol. 214/215,pp. 1134-1137, 2000. [44] H. Ishikura, N. Fukuda, M. Itoi, K. Yasumoto, T. Abe, H. Kasada, and K. Ando, “High quantum efficiency blue-ultraviolet ZnSe pin photodiode grown by MBE,” J. Cryst. Growth, Vol. 214/215, 1130-1133,2000. [45] M. A. Khan, J. N. Kuznia, D. T. Olson, M. Blasingame, and A. R. Bhattarai, “Schottky barrier photodetector based on Mg-doped p-type GaN films,” Appl. Phys. Lett. , vol. 63, pp. 2455-2456, 1993. [46] M. A. Khan, J. N. Kuznia, D. T. Olson, J. M. Van hove,M. Blasingame, L. F. Reitz, “High-responsivity photoconductive ultraviolet sensors based on insulating single-crystal GaN epilayers,” Appl. Phys. Lett. , vol. 60, pp. 2917-2919, 1992. [47] C. K. Wang, T. K. Ko, C. S. Chang, S. J. Chang, Y. K. Su, T. C. Wen, C. H. Kuo, and Y. Z. Chiou, “The Thickness Effect of p-AlGaN Blocking Layer in UV-A Bandpass Photodetectors,” IEEETech. Lett. , vol.17, no. 10, 2005. [48] 鄒昀晉, “以雷射脈衝對磁性薄膜進行超快磁轉化及其動態時間解析,” 2009。 [49] 密修誌, “脈衝雷射蒸鍍法蒸鍍製備氧化釓鋅薄膜的探討,國立臺灣師範大學,” 2013。 [50] 鄧建龍, 姚潔宜, 張茂男, “X-ray Diffraction Utilized in the Semiconductor Industry,” Nano Communication, p. 15, 4, 2008. [51] 陳立俊, 張立, 梁鉅銘, 林文台, 楊哲人, 鄭晃忠, 材料電微鏡學, 國家實驗研究院儀器科技研究中心, 台灣, 1990。 [52] D. A. Neamen, “Semoconductor Physic& Devices,3/E,” McGraw-Hill Education, pp. 376-378, 2003. [53] T. Y. Peng, C. K. Lo, S. Y. Chen, and Y. D. Yao, “Impedance behavior of spin-valve transistor,” J. Appl. Phys. , 99, 2006. [54] D. A. Neamen, “Semoconductor Physic& Devices,3/E ,” McGraw-Hill Education, pp. 395-398, 2003. [55] B. G. Streetman and S. K. Banerjee, “Solid State Electronic Devices, 6/E,” Pearson Education, pp.266-268, 2003. [56] C. Song, K. W. Ceng, F. Zeng, X. B. Wang, Y. X. Shen, and F. Pan, “Giant magnetic moment in an anomalous ferromagnetic isulator: Co doped ZnO,” Phys. Rev. B, vol. 73, no. 2, pp. 024405-1–024405-6, 2006. [57] T. C. Damen, S. P. S. Porto, and B. Tell, Phys. Rev. 142, 570 1966. [58] A. Azam, F. Ahmed, S. S. Habib, “Microwave-assisted synthesis of SnO2 nanorods for oxygen gas sensing at room temperature,” Int. J. Nanomed., pp. 3875–3882, 2013. [59] T. C. Damen, S. P. S. Porto, B. Tell, “Raman Effect in Zinc Oxide,” Phys. Rev. 142, 570, 1966. [60] K. Samanta, P. Bhattacharya, R. S. Katiyar, W. Iwamoto, P. G. Pagliuso, and C. Rettori, “Raman scattering studies in dilute magnetic semiconductor Zn1−xCoxO,” Phys. Rev B. 73, 2006. [61] M. A. Ruderman and C. Kittel, “Indirect Exchange Coupling of Nuclear Magnetic Moments by Conduction Electrons,” Phys. Rev. 96, 1954. [62] K. J. Chen, F. Y. Hung, S. J. Chang, and S. J. Young, “Optoelectronic characteristics of UV photodetector based on ZnO nanowire thin films,” J. Alloys Compd. , vol. 479, pp.674-677, 2009. [63] A. Azam, F. Ahmed, Sami S. Habib1, Z. H. Khan1, and N. A. Salah, “Fabrication of Co-Doped ZnO Nanorods for Spintronic Devices,” Met. Mater. Int., vol. 19, No. 4, pp. 845-850, 2013. [64] C. W. Liu, S. J. Chang, C. H. Hsiao, K. Y. Lo, T. H. Kao, “Noise Properties of Low-Temperature-Grown Co-Doped ZnO Nanorods as Ultraviolet Photodetectors,” IEEE J. Sel. Top. Quant. Electron. , vol. 20, NO. 6, 2014. [65] M. Opel, K.W. Nielsen, S. Bauer, S.T.B. Goennenwein, “Nanosized super paramagnetic precipitates in cobalt-doped ZnO,” Eur. Phys. J. B 63, 437 ,2008.
摘要: In this research, the Co-doped ZnO (CZO) nanorod structures with the thickness around 1.5 m were grown on Si substrates by pulsed laser deposition (PLD) equipped with a KrF excimer laser. The target composition for the preparation of CZO nanorods was selected to Co0.05Zn0.95O. Moreover, the CZO nanorod structures were used for the photodetector applications. During the growth of CZO nanorod structures, the GaN and CZO thin films were employed as the seed layers, respectively. Additionally, the conditions consisting of substrate temperature, gas atmosphere, laser repetition rate, laser pulse and annealing treatment were modified to prepare various seed layers. There are ten seed layers deposited in this study. After growing the CZO nanorod structures on the seed layers, the structural, morphological, and magnetic characteristics of these CZO samples were investigated. Then, the CZO nanorod structures were used to fabricate the metal-semiconductor-metal (MSM) ultraviolet photodetectors, and the device performances were also analyzed. Based on the observations by transmission electron microscopy and the measurements by x-ray diffraction, it can be found that the crystal structure of CZO nanorods are belonged to polycrystalline and wurtzite structure. The wurtzite structure of CZO nanorod is the same with that of the conventional ZnO materials. This confirms that the crystal structure of CZO nanorod can''t be transformed by doping the Co element.The results of Raman measurements indicate that the Co elements are indeed doped into these nanorods. In addition, according to the results of magnetization versus magnetic field strength, it reveals that the saturation magnetization value of CZO nanorod structure is increased with increasing the substrate temperature. The maximum saturation magnetization value of CZO nanorod structure can reach to 2.5 × 10-5 emu. Furthermore, when the GaN seed layer was grown at the substrate temperature of 950 C without introducing any gas, the ultraviolet photodetector fabricated with the CZO nanorod structure possesses the optimum device performances. At a bias voltage of 5 V, the signal-to-noise ratio between the dark current and photocurrent of this photodetector is 1.44 × 103, while its responsivity is measured to be 1.18 × 104 A/W (at a wavelength of 380 nm).
本論文使用脈衝雷射沉積(Pulsed Laser Deposition,PLD)成長氧化鋅摻雜鈷奈米柱在矽基板上,希望藉由晶種層的不同改變CZO奈米柱之光電特性,且研究其奈米柱因晶種層的不同而改變的特性以及應用於金屬-半導體-金屬(metal-semiconductor-metal, MSM)光感測器的製作。在本論文一開始藉由調變基板溫度、成長氣體氛圍、雷射頻率、雷射發數以及退火製程的實施,共鍍置了十種晶種層,再經由脈衝雷射剝離CZO(Co0.05Zn0.95O)靶材來成長CZO奈米柱,最後將其樣品分別做特性量測分析,進而歸納出最佳成長晶種層之條件。 藉由掃描式電子顯微鏡觀察CZO奈米柱表面形態,利用穿透式電子顯微鏡觀察其結晶型態以及利用X光繞射分析作結晶分向之分析,發現CZO奈米柱與wurtzite晶型的氧化鋅的繞射圖譜相符合,為多晶結構,證明氧化鋅並不會因為鈷的摻雜而改變原六方纖鋅礦結構,經由AFM分析了解溫度跟表面粗糙度之關係,利用拉曼分析判斷CZO奈米柱中的鈷摻雜以及局部振動之理論,再來分析磁滯曲線,發現基板溫度越高的情況下,其飽和磁化強度越大,約為2.5 × 10-5 emu,最後做成光電元件量測其光以及暗電流來計算比值及光響應值,發現當晶種層材料使用GaN、成長過程中沒有通入氣體、且其晶種層成長溫度為950 C時,成長在此晶種層上面的CZO奈米柱,其製作的光感測器在5V偏壓下,有最好的光暗電流比值1.44 × 103,且具有高響應值1.18×10+4 A/W(@波長380 nm)。
URI: http://hdl.handle.net/11455/91735
文章公開時間: 10000-01-01

檔案 大小格式 
nchu-104-7100067007-1.pdf7.49 MBAdobe PDF 請求副本

在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。