Please use this identifier to cite or link to this item:
標題: Ab-initio Study on TMxCd1-xS (TM: Ti2+, Cr2+, Mn2+, Fe2+, Co2+, and Ni2+, x= 0.03, 0.25) Femtosecond Laser and its Electro-Optical Characteristics
利用第一原理計算探討TMxCd1-xS (TM: Ti2+, Cr2+, Mn2+, Fe2+, Co2+, and Ni2+, x=0.03, 0.25)飛秒雷射與電光特性
作者: Cheng-Hung Lin
關鍵字: first-principles
defect level
引用: [1] W. Perrie, M. Gill, G. Robinson, P. Fox, and W. O’Neill, “Femtosecond laser micro-structuring of aluminium under helium,” Applied Surface Science, Vol. 230, pp. 50-59, 2004. DOI: 10.1016/j.apsusc.2003.12.035 [2] S. Queste, R. Salut, S. Clatot, J.-Y. Rauch, and C. G. Khan Malek, “Manufacture of microfluidic glass chips by deep plasma etching,femtosecond laser ablation, and anodic bonding,” Microsystem Technologies, Vol. 16, pp. 1485-1493, 2010. DOI: 10.1007/s00542-010-1020-1 [3] S. Mirov, V. Fedorov, I. Moskalev, M. Mirov, and D. Martyshkin, “Frontiers of mid-infrared lasers based on transition metal doped II-VI semiconductors,” Journal of Luminescence, Vol. 133, pp. 268-275, 2013. DOI: 10.1016/j.jlumin.2011.09.040 [4] V. A. Akimov, V. I. Kozlovsky, Y. V. Korostelin, A. I. Landman, Y. P. Podmar''kov, Y. K. Skasyrsky, and M. P. Frolov, “Efficient pulsed Cr2+:CdSe laser continuously tunable in the spectral range from 2.26 to 3.61µm,” Quantum Electronics, Vol. 38, pp. 205-208, 2008. DOI: 10.1070/QE2008v038n03ABEH013707 [5] K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 11, pp. 713-720, 2005. DOI: 10.1109/JSTQE.2005.850570 [6] V. A. Akimov, V. I. Kozlovsky, Y. V. Korostelin, A. I. Landman, Y. P. Podmar''kov, Y. K. Skasyrsky, and M. P. Frolov, “Efficient cw lasing in a Cr2+:CdSe crystal,” Quantum Electronics, Vol. 37, pp. 991-992, 2007. DOI: 10.1070/QE2007v037n11ABEH013715 [7] V. A. Akimov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, V. V. Mislavskii, Y. P. Podmar''kov, Y. K. Skasyrsky, and A. A. Voronov, “Cr2+:CdS crystal as a new material for room-temperature tunable mid-infrared lasing,” Physica Status Solid C, Vol. 7, pp. 1688-1690, 2010. DOI: 10.1002/pssc.200983228 [8] J. Kokaj, and A. E. Rakhshani, “Photocurrent spectroscopy of solution-grown CdS films annealed in CdCl2 vapour,” Journal of Physics D: Applied Physics, Vol. 37, pp. 1970-1975, 2004. DOI: 10.1088/0022-3727/37/14/012 [9] V. I. Kozlovsky, Y. V. Korostelin, A. I. Landman, Y. P. Podmar''kov, Y. K. Skasyrsky, and M. P. Frolov, “Continuous-wave Cr2+:CdS laser,” Quantum Electronics, Vol. 40, pp. 7-10, 2010. DOI: 10.1070/QE2010v040n01ABEH014189 [10] T. H. Maiman, R. H. Hoskins, I. J. D''Haenens, C. K. Asawa, and V. Evtuhov, “Stimulated Optical Emission in Fluorescent Solids. II. Spectroscopy and Stimulated Emission in Ruby,” Physical Review, Vol. 123, pp. 1151-1157, 1961. DOI: 10.1103/PhysRev.123.1151 [11] D. VonderLinde, K. SokolowskiTinten, and J. Bialkowski, “Laser-solid interaction in the femtosecond time regime,” Applied Surface Science, Vol. 109, pp. 1-10, 1997. DOI: 10.1016/S0169-4332(96)00611-3 [12] E. Hakan, A. Douglas, R. Stefan, and J. Robert, “Ab initio self-consistent laser theory and random lasers,” Nonlinearity, Vol. 22, pp. 1-18, 2009. DOI: 10.1088/0951-7715/22/1/C01 [13] P. Kochert, J. Flugge, C. Weichert, R. Köning and E. Manske, “Phase measurement of various commercial heterodyne He-Ne-laser interferometers with stability in the picometer regime,” Measurement Science and Technology, Vol. 23, pp 074005, 2012. DOI:10.1088/0957-0233/23/7/074005 [14] B. A. Ghani, and M. Hammadi,“Mathematical modeling of rubylaser as a pumping source of a self Q-switched distributed feedback dye laser,” Optics and Lasers in Engineering, Vol. 42, pp 603-612, 2004. DOI: 10.1016/ j.optlasen g.2004.04.002 [15] H. F. Liu and W. F. Ngai, “Nonlinear dynamics of a directly modulated 1.55 μm InGaAsP distributed feedback semiconductor laser,” IEEE Journal of Quantum Electronics, Vol. 29, pp. 1668-1675, 1993. DOI: 10.1109/3.234419 [16] A. Godard, “Infrared (2-12 μm) solid-state laser sources: a review,” Comptes Rendus Physique, Vol. 8, pp. 1100-1128, 2007. DOI: 10.1016/j.crhy.2007.09.010 [17] G. J. Spuhler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” Journal of The Optical Society of America B-Optical Physics, Vol. 16, pp. 376-388, 1999. DOI: 10.1364/JOSAB.16.000376 [18] U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Optics and Lasers in Engineering, Vol. 44, pp. 699-710, 2006. DOI: 10.1016/j.optlaseng.2005.04.015 [19] V. A. Akimov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar''kov, Y. K. Skasyrsky, and A. A. Voronov, “Pulsed broadly tunable room-temperature Cr2+:CdS laser,” Applied Physics B-Lasers and Optics, Vol. 97, pp. 793-797, 2009. DOI: 10.1007/s00340-009-3617-6 [20] E. Sorokin, D. Klimentov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, Y. P. Podmar''kov, Y. K. Skasyrsky , and I. T. Sorokina, “Continuous-wave broadly tunable high-power Cr:CdS laser,” Applied Physics B-Lasers and Optics, Vol. 117, pp. 1009-1014, 2014. DOI: 10.1007/s00340-014-5921-z [21] Y. V. Korostelin and V. I. Kozlovsky, “Vapour growth of II–VI solid solution single crystals by contact-free technique,” Journal of Alloys and Compounds, Vol. 371, pp. 25-30, 2004. DOI: 10.1016/j.jallcom.2003.07.024 [22] M. J. Tafreshi, K. Balakrishnan, and R. Dhanasekaran, “Microhardness and optical studies on CdS single crystals grown by sublimation and hydrogen transport techniques,” Materials Research Bulletin, Vol. 30, pp. 1387-1392, 1995. DOI: 10.1016/0025-5408(95)00153-0 [23] P. Hohenberg , and W. Kohn, ”Inhomogeneous electron gas,” Physical Review B, Vol. 136, pp 864-871, 1964. DOI: 10.1103/PhysRev.136.B864. [24] J. P. Perdew and Y. Wang, “Accurate and Simple Density Functional for the Electronic Exchange Energy: Generalized Gradient Approximation,” Physical Review B, Vol. 33, pp. 8800, 1986. DOI: 10.1103/PhysRevB.33.8800 [25] J. P. Perdew, J. A. Chevary, S. H. Vosko. K. A. Jackson, M. R. Petersen, and C. Fiolhais, “Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation,” Physical Review B, Vol. 46, pp. 6671, 1992. DOI: 10.1103/PhysRevB.46.6671 [26] M. Ernzerhof, and G. E. Scuseria, “Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional,” Journal of Chemical Physics, Vol. 110, pp 5029-5036, 1999. DOI: 10.1063/1.478401 [27] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias and J. D. Joannopoulos, “Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients,” Reviews of Modern Physics, Vol. 64, pp 1045-1097, 1992. DOI: 10.1103/RevModPhys.64.1045 [28] M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, “First-principles Simulation: Ideas, Illustrations and the CASTEP code,” Journal of Physics. Condensed Matter, Vol. 14, pp. 2717-2744, 2002. DOI: 10.1088/0953-8984/14/11/301 [29] C. Bourouis and A. Meddour, “First-principles study of structural, electronic and magnetic properties in Cd1-xFexS diluted magnetic semiconductors,” Journal of Magnetism and Magnetic Materials, Vol. 324, pp. 1040-1045, 2012. DOI: 10.1016/j.jmmm.2011.10.022 [30] S. Nazir, N. Ikram, S. A. Siddiqi, Y. Saeed, A. Shaukat, and A. H. Reshak, “First principles density functional calculations of half-metallic ferromagnetism in Zn1-xCrxS and Cd1-xCrxS,” Current Opinion in Solid State and Materials Science, Vol. 14, pp. 1-6, 2010. DOI: 10.1016/j.cossms.2009.08.001 [31] Y. X. Han, C. L. Yang, J. S. Yang, M. S. Wang, and X. G. Ma, “Effect of doping Fe and Si on electronic structure and optical Properties of CdS,” Physical Review B, Vol. 417, pp. 17-23, 2013. DOI: 10.1016/j.physb.2013.02.009 [32] V. Fiorentini and A. Baldereschi, “Dielectric scaling of the self-energy scissor operator in semiconductors and insulators,” Physical Review B, Vol. 51, pp. 17196, 1995. DOI: 10.1103/PhysRevB.51.17196. [33] S. M. Taheri, M. H. Yousefi, and A. A. Khosravi, “Tuning luminescence of 3d transition-metal doped quantum particles: Ni+2: CdS and Fe+3: CdS,” Brazilian Journal of Physics, Vol. 40, pp. 301-305, 2010. DOI: 10.1590/S0103-97332010000300007 [34] T. Li, L. Luo, M. Hupalo, J. Zhang, M. C. Tringides, J. Schmalian, and J. Wang, “Femtosecond Population Inversion and Stimulated Emission of Dense Dirac Fermions in Graphene,” Physical Review Letters, Vol. 108, pp. 16-20, 2012. DOI: 10.1103/PhysRevLett.108.167401
摘要: In this thesis, the band structure and partial density of state (PDOS) of CdS, and TMxCd1-xS (TM = Ti2+, Cr2+, Mn2+, Fe2+, Co2+, Ni2+, x = 0.03, 0.25) were analysed by first-principles calculations based on density functional theory. The band gap of 8-atoms CdS compound is 1.20 eV, and Cr2+0.25Cd0.75S compound has the smallest band gap of 0.71 eV. In addition, the band gap of 64-atoms CdS compound is 0.50 eV, and Cr2+0.03Cd0.97S compound also has the smallest band gap of 0.22 eV among all the TM doped into CdS compound. The analytic results from HOMO and LUMO reported Cr2+0.03Cd0.97S produced three defect levels which are dominated by Cr-3d and S-3p between valence-band and conduction-band of CdS. Therefore, the results told us Cr2+0.03Cd0.97S is the most suitable for the use as laser gain medium among Ti2+0.03Cd0.97S, Mn2+0.03Cd0.97S, Fe2+0.03Cd0.97S, Co2+0.03Cd0.97S and Ni2+0.03Cd0.97S.
本論文係以第一原理(First-principles)計算基於密度泛函理論(Density functional theory, DFT)研究CdS與TMxCd1-xS (TM = Ti2+, Cr2+, Mn2+, Fe2+, Co2+, Ni2+, x = 0.03, 0.25)能帶結構及部分能態密度,以探討過渡金屬濃度3%及25%置換Cd原子形成TM0.25Cd0.75S及TM0.03Cd0.97S晶體材料,所產生之缺陷能階及電子軌域分佈情形。在CdS模型使用8原子晶胞的部分,CdS能隙值經計算為1.20 eV,而Cr2+0.25Cd0.75S經計算具有最小之能隙為0.71 eV,且在CdS能隙間分裂產生由Cr-3d及S-3p主導之缺陷能階|0>及|-1>。而在CdS模型使用64原子晶胞的部分,CdS能隙值經計算為0.50 eV,而Cr2+0.03Cd0.97S具有最小之能隙為0.22 eV,並且在CdS能隙間分裂產生最多的缺陷能階|1>、|0>及|-1>。
文章公開時間: 10000-01-01
Appears in Collections:精密工程研究所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.